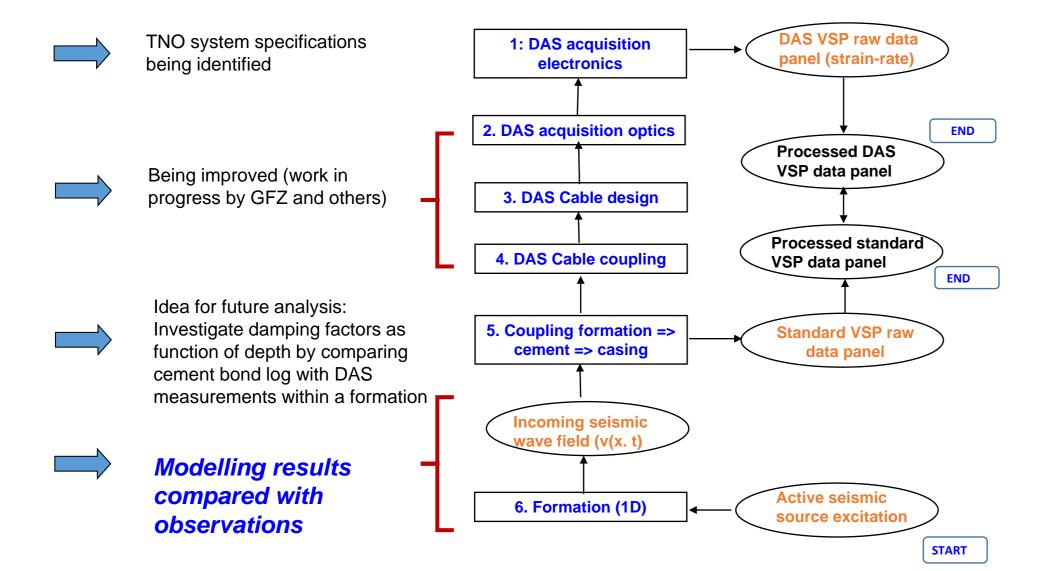


Demonstration of Soft Stimulation Treatments of **Geothermal Reservoirs**

Task 6.3 "Technical performance monitoring for validation and control"

Jan Henninges (GFZ), Bob Paap (TNO), Francesco Grigoli (ETH)

Results

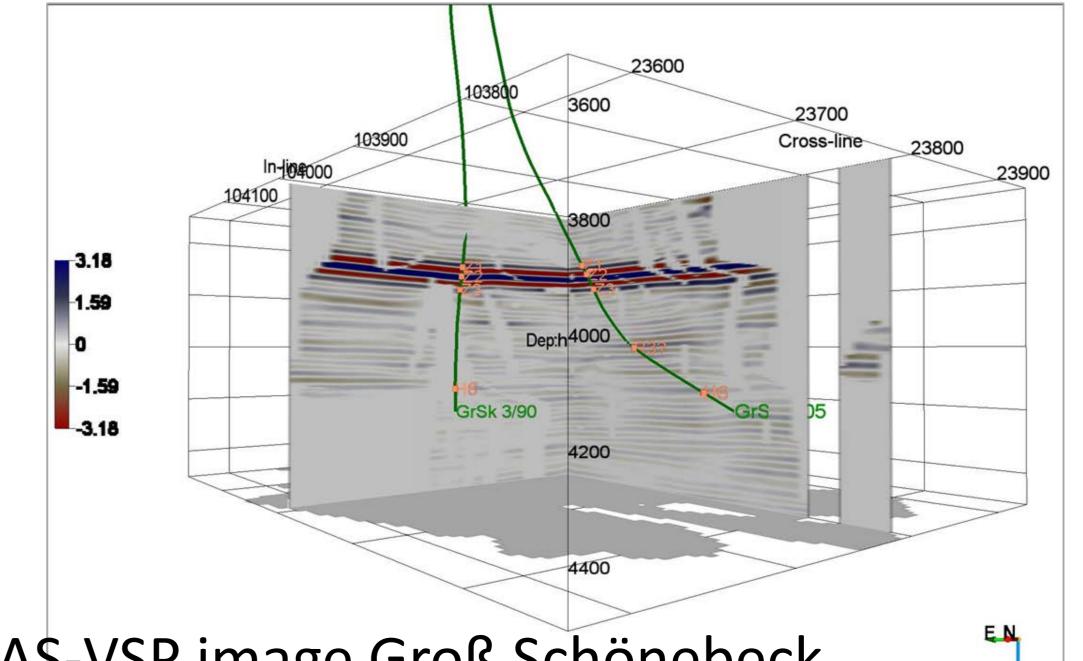

- Parameters for assessment of technical performance defined; Overview of measurement parameters, tools and methods.
- Great potential of innovative new approaches for monitoring, like distributed fiber-optic sensing,

and full-waveform methods for microseismic monitoring (ETH, also see Tasks 6.4 and 5.4) **Demonstration sites**

Pohang (KR), Geldinganes (IS): Cyclic hydraulic stimulation

Well monitoring with Distributed Acoustic Sensing (DAS)

DAS response modeling (TNO)


DAS transfer functions, VSP data flow. Simulation:

Sensitivity sufficient for microseismic monitoring.

Soultz-sous-Forêts (FR): Chemical stimulation

Case studies DAS-VSP feasibility (GFZ)

- High quality VSP products at reduced cost; Specific acquisition characteristics and signal quality.
- Monitoring of borehole integrity using DAS for passive monitoring during well operation.

Monitoring design: parameters, tools and methods

Assessment parameter	Input information	Measurand*
Energy output	Flowrate, quality (phase	1.1, 1.2
	composition), and	
	temperature of produced	
	fluid	
Productivity/injectivity of well	a) at surface	1.2, 1.3
Location and size of stimulation	b) downhole	2.2.1, 2.3.1,
intervals		2.3.2
Productivity/injectivity of individual		2.1.1, 2.2.1,
reservoir/stimulation intervals		
Leakage detection (borehole		2.2.1, 2.3.1,
integrity)		2.3.2
extent of induced	Location of induced seismic	1.4
fractures/stimulated rock volume	events during stimulation	
Structural integrity of borehole	Borehole integrity	2.2.2, 2.2.3,

Measurand*	Measurement parameters	Sensors, tools and methods			
1	Surface monitoring				
1.1	Flowrate, quality (phase	Flow meter (at wellhead)			
	composition)				
1.2	Fluid temperature	temperature sensor (at wellhead)			
1.3	Fluid pressure	pressure sensor (at pump inlet)			
1.4	Velocity/acceleration of ground	Seismometer array, microseismic			
	motion	monitoring (at surface, in shallow			
		and/or deep boreholes)			
2	Downhole monitoring				
2.1	Point sensors				
2.1.1	Reservoir pressure	Pressure sensor			
2.2	Electric wireline logging				
2.2.1	Profiles of pressure, temperature,	Production logging tool, e.g.			
	velocity, density of	spinner flow meter with			
	produced/injected fluid over	gradiomanometer			
	reservoir interval				
2.2.2	Morphology/diameter of inner	Multi-finger caliper, acoustic			
	surface of borehole completion	borehole scanner			
2.2.3	Sonic amplitudes/bond index,	Cement-bond log, acoustic			
	acoustic impedance of annular fill	borehole scanner			
2.3	Fiber-optic sensing				
2.3.1	Repeated well temperature	DTS (Distributed Temperature			
	profiles	Sensing)			
2.3.2	Repeated profiles of dynamic	DAS (Distributed Acoustic			
	strain changes or vibration along	Sensing)			
	well				

 Timing of monitoring campaigns: Immediately before (base line) and after treatment (assess efficiency, e.g. fold 		2.3	Fiber-optic sensing	
			acoustic impedance of annula	
zonal isolation			2.2.3	Sonic amplitudes/bond index
casing and annular cementation,	measurements			surface of borehole completion

- of increase of productivity/injectivity) during treatment (control of stimulation process)
- long-term monitoring during operation (sustainability of stimulation effect)
- on demand, e.g. in case of unexpected developments (e.g. changes in productivity/injectivity) or technical problems (e.g. suspected leakages)

References

Grigoli, F., L. Scarabello, M. Böse, B. Weber, S. Wiemer, and J. F. Clinton (2018), Pick- and waveform-based techniques for real-time detection of induced seismicity, Geophys. J. Int., 213(2), 868-884, doi:10.1093/gji/ggy019.

Henninges, J., E. Martuganova, M. Stiller, B. Norden, and C. M. Krawczyk (in review, 2020), Vertical seismic profiling with distributed acoustic sensing images the Rotliegend geothermal reservoir in the North German Basin down to 4.2 km depth, Solid Earth Discuss., 2020, 1-21, doi:10.5194/se-2020-169.

Paap, B., A. Verdel, V. Vanderveijer, and S. Carpentier (2020), Potential of using DAS within a traffic light system at a geothermal site, First EAGE Workshop on Fibre Optic Sensing, 9-11 March 2020, Amsterdam, the Netherlands.

Raab, T., T. Reinsch, S. R. Aldaz Cifuentes, and J. Henninges (2019), Real-Time Well-Integrity Monitoring Using Fiber-Optic Distributed Acoustic Sensing, SPE Journal, 24(5), 1997-2009, doi:10.2118/195678-PA.

This project has received funding from the European

Union's Horizon 2020 research and innovation

programme under grant agreement No. 691728

