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Summary 

Indirect effects (tsunami, fires, and landslides) may significantly contribute to the overall impact 

of a given earthquake. The specify of landslides is that even when they do not directly impact 

population they can still have adverse effects by blocking roads and hampering rescue opera-

tions. In this research, we aim at detecting possible earthquake triggered landslides in order to 

improve response efficiency.  

 

In practice, we develop a methodology which first harvest tweets containing both keywords re-

lated to landslides and a picture, we then trained an artificial intelligence (AI) system to select 

the small proportion of pictures actually related to landslides, the final analysis and validation 

being done by human.  

 

The AI system reduces the amount of images to analyze by 99%. To classify the images, a 

training model has been developed by a multidisciplinary team involving the Euro-Mediterranean 

Seismological Center (EMSC), the Qatar Computing Research Institute (QCRI) and the landslide team of 

the British Geophysical Survey (BGS). Training the system has been a huge part of the work. Real-time 

performance evaluation of the model shows that the system can detect a landslide with a preci-

sion of 76%.  

 

This work initially developed for earthquake-triggered landslides only has attracted interest from 

the landslide community with the involvement of the BGS landslide team. Thanks to them, the 

scope has been widened to a prototype service now called “Global Landslide Reporter”, 2 papers 

have been submitted for publication (one accepted, one in review) and once they are both pub-

lished a post on the reference landslide blog will be released. The review process has already 

initiate a discussion to link our prototype service to landslide satellite observations. More gener-

ally, the purpose of the blog post will be to invite the landslide community to test the prototype 

service, hopefully improve it and turn it to an operational and widely used service.  

 

The demonstrator is currently running in real-time and is available to the community 

(https://landslide-aidr.qcri.org/service.php). 

  

https://landslide-aidr.qcri.org/service.php
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1. Introduction 

Landslides are responsible of thousands of death and can cost up to 1 billion every year. Land-

slides may hamper rescue operation by blocking roads (Figure 1), especially when it happens in 

mountain when only one road is available (Figure 1 - right). Having information quickly after 

landslides occur can contribute to save many lives and improve response efficiency. A small 

number of landslides are permanently monitored otherwise they are the subject of direct or sat-

ellite observations.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Smartphone applications or web services have been developed to allow citizen to report a land-

slide. They have to use a specific application and landslide specialists are still needed to analyze 

and search for more information on the web. Some agencies also manually harvest landslide 

observations on social media but it is a labor extensive process. 

 

Our approach is based on a machine learning system that collect and classify landslide-related 

images from twitter in real-time and automatically. In 2019, 550 million tweets were send Twit-

ter user every day (5787 tweets/sec) (Phengsuwan et al. 2021). While Twitter is already in use 

at EMSC to detect felt earthquakes, finding information about landslides on twitter is like finding 

a needle in haystack. There is lots of noisy information which makes the extraction of relevant 

information difficult. While an earthquake can be felt hundreds of kilometers away from the epi-

center location, a landslide is very local phenomenon which makes it difficult to witness. The 

Figure 2 show a comparison of the number of tweets containing the keyword “earthquake” after 

an earthquake in California in this example (left) and the number of tweets containing the key-

words landslide (red curve) over 7 month during 6 hours window (right) superimpose with 

earthquake magnitudes > 5 (blue dots). It shows that while after an earthquake, the number 

tweets increase really fast after the quake (the vertical red line on the left) and the number of 

tweets is very important. Figure 2 (right) shows that the number of tweets remains very small 

(~5 tweets/min) even when 32 languages are monitored. 

 

 

 

Figure 1: Examples of roads blocked by a landslide 
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Figure 2: Comparison of the number of tweet containing the keyword “earthquake” after an earthquake in California 

in this example (left) and the number of tweet containing the keyword landslide (right) over 6 hour window.  

In this project, involving three teams, the Euro-Mediterranean Seismological Center (EMSC), the Qa-

tar Computing Research Institute (QCRI) and the landslide team of the British Geophysical Survey 

(BGS), we will present a new method based on artificial intelligence using the Artificial Intelli-

gence for Disaster Reduction (AIDR) developed by QCRI. The system collects tweets based on land-

slide-related keywords, it filters out irrelevant and duplicate images to reduce the amount of data 

and classify the remaining image into landslide and not landslide (Figure 3). 

 

 

Figure 3: Graphical representation illustrating the workflow involved in collecting, tagging and classifying images 

from Tweets as 'landslide' and 'not landslide' (from Pennington et al. 2022). Photographs BGS © UKRI [2022].  

 

The initial goal was to detect earthquake-triggered landslides and fires by real time monitoring 

of Twitter. No tweets related to triggered fires have been collected, so we only focused on land-

slides, and as shown on Figure 2, the number of tweet reporting landslide is very small, so we 

decided to extend our search to all landslides regardless of the trigger. 

 

In the next section, we will present our methodology, and discuss our results. This project has 

led to 2 submitted papers in appendix and a future one in Dave Petley’s blog 

(https://blogs.agu.org/landslideblog/). 
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2. Methodology 

Using artificial intelligence (AI) requires 2 main steps. First, create a large dataset of manually 

annotated images of landslide and no landslide and then train the AI based on the manually anno-

tated dataset. 

 

We have created a large dataset of landslides images gathered from google (6284), twitter (1153) 

using landslide keywords and the GeoScenic BGS database (4300) (BGS, 2021). In total, we have 

collected 11737 landslides images. All images have been independently labelled as landslide and 

not landslide by 3 persons from EMSC and BGS based on a methodology defined in Pennington et 

al. 2022 (in appendix). To ensure a good agreement between the landslides specialists, two statis-

tical measures have been carried out based, one based on the Fleiss’ Kappa (Fleiss, 1971) and a 

percentage agreement. The results show a good agreement between the specialists with 76% 

agreement and Fleiss’ Kappa score of 0.58 which correspond to almost “substantial agreement”. 

The distribution of the images in the training dataset is summarized in Table 1. 23% of images 

dataset correspond to landslide. This low percentage show why we can’t only rely on landslide 

keywords to collect landslide data. 

 

Table 1: Distribution of the images across data sources. 

 Google Twitter GeoScenic Total 

Landslide 1240 598 852 2690 

Not landslide 5044 555 3448 9047 

Total 6284 1153 4300 11737 

 

The manual labelling methodology is detailed with examples in Pennington et al. 2022 in appen-

dix. The system has been trained using a convolutional neural network with our training dataset. 

The Figure 4 shows on few examples how the AI is interpreting the raw images collected using a 

heat map which show the zone where the AI is analyzing.  
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Figure 4: Examples of the raw images collected on the left and the prediction associated, by the AI with the help of 

a heat map which show where the AI is looking at.  
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3. Real-time landslide classification 

The real time landslide AIDR platform (https://landslide-aidr.qcri.org/landslide_system.php) has 

been monitoring twitter data between February 2020 and December the 29th 2021. Images are 

first collected from a text-based approach. We developed a multi-lingual list of 339 landslide-

related keywords in 32 languages (see appendix 1). Keywords such as landslip, debris flow, 

mudslides, rockfalls, avalanche… are also searched. 

 

During this period, 2.5 million unique landslide-related images have been analyzed and only 

17000 images were labeled as landslide, corresponding to only 1% of the collected images.  To 

validate the landslide model in real-time and because of the huge amount of data, we sampled 

3600 tweets with images collected that have been labelled by the system. These 3600 images 

have been reviewed by the 3 landslide specialists and compared by the machine-predicted la-

bels. The results are summarized in Table 2. 

 

Table 2: Validation of landslide model predictions. 

True positive 

(TP) 

False Positive 

(FP) 

False Negative 

(FN) 

True Negative 

(TN) 

Total 

123 39 43 3395 3600 

 

True positive and True Negative correspond to correct label by the system, while false positive 

(the model incorrectly classifies a not-landslide image as landslide) and false negative (the 

model incorrectly classifies a landslide image as not-landslide).  

 

The performance of the model shows that the AI is able to detect a landslide with a precision of 

76%, where the precision is defined as the ratio TP/(TP+FP) and it is a better statistics when 

dealing with imbalance distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

https://landslide-aidr.qcri.org/landslide_system.php


RISE – Real-Time Earthquake Risk Reduction for a Resilient Europe 

 

21.4.2022 9 

4. Examples 

Even though we extend our search to all landslides regardless of the trigger, we present 2 ex-

amples of landslide triggered by earthquakes. The Figure 5 shows a landslide/rockfalls triggered 

by a magnitude 7.4 in Oaxaca Province in (Mexico) the 2020-06-23T15:29:04 UTC. The rockfalls 

completely blocked a road, and a car has been crushed by boulders (Figure 5-c). It is also a 

typical example where a road is closed and could impede any rescue operations. The two first 

images have been collected by the AIDR platform 5h45 after the earthquake origin time, while 

the Figure 5-c has been collected 7h20 after the earthquake origin time. The earthquake oc-

curred in the morning local time. 

 

The Figure 6 shows different landslides collected automatically by the AIDR platform after a 

magnitude 7.1 in Japan the 2021-02-13 14:07:51 UTC. The earthquake occur during night time 

in Japan (23:07 Japan time), thus only few images were collected in the first hours. The first 

image (Figure 6a) has been collected 1h45 after the earthquake and is a photo taken on a TV 

showing the landslide on the news. The three other images have collected the day after, around 

10 hours after the earthquake origin time. 

 

 

Figure 5: Examples of landslide images collected automatically by the AIDR platform few hours after the Oaxaca 

M7.4 earthquake the 2020-06-23T15:29:04 UTC. 
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Figure 6: Examples of images harvested automatically by the AIDR platform few hours after a Japanese M7.1 earth-

quake the 2021-02-13 14:07:51 UTC. 
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5. Discussion 

The initial objective of the project was to detect earthquake-triggered landslide on Twitter. It 

has been extended to a “Global Landslide Reporter” prototype. The system collect images based 

on keywords, then filters out irrelevant and duplicate images using an AI approach.   

 

The demonstrator used during this study is available at https://landslide-

aidr.qcri.org/landslide_system.php. A new interface is now publicly available at 

https://landslide-aidr.qcri.org/service.php which includes the latest updates. It allows the user 

to check live system, to filter the data by date, country and explore all data on a map. The user 

can also give feedback on the system. 2 papers have been submitted (appendix 2) and in order 

to gain visibility from the landslide community, we will post on Dave Petley’s blog which most 

people in the landslide community read. 

 

Tweets are no longer geolocated by default, which mean that except if a user chooses to share 

its location or if a user write his location on the tweet, the location is no longer available. The 

current version inferred the location based on the texts within the tweet when no location is 

explicitly available (Imran et al. 2022). Although not perfect, it allows displaying the landslide on 

the map but as for all harvesting results from Twitter, the location has to be manually checked.   

 

As shown in Figure 2 (right) adding more keywords in various languages strongly increase the 

number of images collected. We still need to add more languages and invite through our publi-

cations potential users to share their feedback and turn this prototype in an operational service. 

 

More details about this work can be found in our 2 submitted papers in appendix 2. 

  

https://landslide-aidr.qcri.org/landslide_system.php
https://landslide-aidr.qcri.org/landslide_system.php
https://landslide-aidr.qcri.org/service.php
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6. Conclusions and Perspectives 

In this study, a model has been developed to detect automatically and in real time landslide imag-

es from twitter. This work is a collaboration between computer scientists (QCRI), earthquake 

(EMSC) and landslide (BGS) specialists which has led to 2 submitted articles. A future post will be 

written on Dave Petley’s blog (https://blogs.agu.org/landslideblog) once Pennington et al. 2022 

will be published.  

 

This work shows how artificial intelligence can help us sort out irrelevant images collected from 

Twitter. The AI decreases by more than 99% the pictures requiring a visual inspection! 

 

Perhaps more importantly, this work which was initially focused on earthquake-triggered land-

slides is turning, thanks to the interest of the landslide community, to a global landslide reporter 

service. This interest has been further demonstrated by a recent discussion to join it with landslide 

imagery services, a combination which could prove crucial to improve the location of the observa-

tions. These are strong indications that this project development will be maintained far beyond the 

end of the RISE project and will serve a large community of users. 

  

https://blogs.agu.org/landslideblog
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Appendix 1 – List of all keywords 

landslide, landslides, rockfall, rock-fall, rockslide, rockslides, mudslide, mudslides, mudflow, 

mudflows, landslip, earthslip, Sturzstrom, avalanche, glissement de terrain, glissements de ter-

rain, chute de pierres, coulée de boue, effondrement, avalanche, frana, frane, crollo di roccia, 

crolli di roccia, caduta massi, cadute massi, smottamento, smottamenti, slavina, slavine, llisca-

ment de terra, esllavissada de terra, Despreniments de roques, colada de terra, corriment de 

terra, allau, Esllavissaments superficials, deslizamiento, deslizamiento de tierra, caída de roca, 

desprendimientos de rocas, deslizamiento de rocas, avalancha de barro, deslizamiento de barro, 

deslizamiento de lodo, Colapso, tanah runtuh, kejatuhan batu, tanah runtuh, lumpur, tanah 

longsor, batu jatuh, guguran, lahar, longsoran besar, ,يديالجل, انهيار أرضي , انزلاق أرضي , سقوط صخري  

,الانهيار ياراتالانه الصخرية, الإنزلاق الطيني , الإنزلاقات الطينية, الانزلاق الأرضي ، انزلاق الأرض,   ,оползень ,انهيار صخري , 

оползни, зсув, зсув грунту, зсув ґрунту, обвал , обвал скель , падіння скель, камнепад , 

грязьовий потік , селеві потоки , обрушение, лавина, 산사태, 낙석, 암반사태, 진흙사태, 이류, 

사태, 눈사태, heyelan, toprak kayması, heyelanlar, toprak kaymaları, kaya düşmesi, kaya kay-

ması, kaya göçmesi, kaya akıntısı, moloz akıntısı, moloz akışı, moloz akması, moloz kayması, 

kaya düşmeleri, kaya kaymaları, kaya göçmeleri, kaya akıntıları, moloz akıntıları, moloz kay-

maları, çamur akıntısı, çamur akışı, çamur kayması, çamur akması, tortu akıntısı, tortu akışı, 

tortu akması, tortu kayması, döküntü akıntısı, döküntü akışı, döküntü akması, döküntü kayması, 

lahar, çamur akıntıları, çamur kaymaları, tortu akıntıları, tortu kaymaları, döküntü akıntıları, 

döküntü kaymaları, laharlar, çığ, çığlar, Erdrutsch, Erdrutsche, Bergrutsch, Bergrutsche, 

Hangrutsch,  Hangrutsche, Hangrutschung, Hangrutschungen, Abrutschung, Abrutschungen, 

Steinrutschung, Steinrutschung, Hangmure, Hangmuren, Steinschlag, Steinschläge, Murgang, 

Murgänge, Mure, Muren, Schlammlawine, Schlammlawinen, Murenabgang, Murenabgänge, 

Bergsturz, Bergstürze, Lawine, Lawinen, Schneelawine, Schneelawinen, Eislawine, Eislawinen, 

Staublawine, Staublawinen, ভূমিস্থলন, भूस्खलन, 地すべり, 土砂災害, 土砂崩れ, 山津波, 地滑り, 山崩れ, 山

, 坍, 土石流, 雪崩, 表層雪崩, 滑り, κατολίσθηση, καθίζηση εδάφους, πτώση βράχου, βραχολίσθηση, 

ολίσθηση λάσπης, λασπολίσθηση, καθίζηση έδαφους, χιονοστιβάδα, pagguho ng lupa, pagkahu-

log ng bato, putik sa lupa, 滑坡 , 山体滑坡, 岩崩, 岩滑, 泥石流, 山体塌方 , 地崩, 雪崩, deslizamento 

de terras, Queda de rochas, deslizamento de rochas, Queda de blocos, deslizamento de lamas, 

lamas, Movimentos de massa, Avalanche, lur-irristatzea, harri-jausia , harri erorketa, arroka-

irristatzea, Lur-kolada, azal-irristatzea , gainazaleko-irristatzea, higakin-korrontea, alunecare de 

teren, alunecare de teren cu caderi de roci, caderi de roci, alunecare de noroi, alunecare de pa-

mant, avalansa, Rrëshqitje toke, Rrëshqitje shkëmbore, Rrëshqitjet shkëmbore, Rrëshqitje e 

tipit “rënie e coprave dhe blloqeve shkembore, Rrjedhje balte, Rrjedhjet balte, Rrëshqitje dheu, 

Rrëshqitje toke, Rrëshqitje e tipit ortekë, zemeljski plaz, skalni podor, skalni zdrs, skalni zdrsi, 

blatni tok, blatni tokovi, zdrs pobočja, zdrs zemljine, plaz, skred, skreden, jordskred, jordskre-

den, bergskred, lerskred, släntstabilitet, kvicklera, snöskred, lavin, odron, klizište, lavina, 

kőlavina, hólavina, földcsuszamlás, talajcsúszás, talajcsuszamlás, sárfolyás, talajfolyás, iszap-

folyás, sárlavina, talajkúszás, suvadás, kőomlás, hegyomlás, hegyomlások, iszapár,  

földcsuszamlás, földcsuszamlások, sárlavina, sárlavinák, törmeléklavina, lavina, lavinák, 

alunecare de teren, alunecare alunecări de stănci , alunecări de stănci, alunecare de noroi, 

alunecări de noroi, deplasări de teren, alunecare de pămănt, avalanșă, Aardverschuiving, aard-

verschuivingen, Bergstorting , Rotslawine, steenlawine, puinlawine, Modderlawine, Modder-

stroom, modderstromen, Lawine, kliziste, klizista, odron, odroni, blatni tok, blatni tokovi, zem-

ljani tok, zemljani tokovi, lavina, lavine, osuwisko, osuwiska, obryw skalny, obrywy skale,  

osuwisko skalne, osuwiska skalne, lawina błotna, lawiny błotne, osuwisko, lawina, lawiny, بهمن , 

 ,Ho heleha hoa mobu, Ho theteha hoa mafika ,رانش زمين , زمين لغزه, ريزش سنگ, سنگ بارش, سنگ لغزه, گل لغزه

Seretse se phallang, Ho hlefoha hoa lefats'e, Ho heleha, le ho phalla hoa lehloa, მეწყერი, 

ქვათაცვენა, კლდეზვავი, კლდეზვავები, ღვარცოფი, ღვარცოფები, ზვავი , maanvyöry, putoavia kiviä, 

kivivyöry, kivivyöryt, mutavyöry, mutavyöryt, sortuma, lumivyöry, snowmelt, snow melt, debris, 

flow, cliff fall, cliff collapse, landslips. 
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A Real-time System for Detecting Landslide
Reports on Social Media using Artificial

Intelligence
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Imran1[0000−0001−7882−5502], Julien Roch2, Catherine

Pennington3[0000−0002−3560−9030], Vanessa Banks3, and Remy
Bossu2[0000−0002−9927−9122]

1 Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
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2 European-Mediterranean Seismological Centre, Arpajon, France
{julien.roch,bossu}@emsc-csem.org

3 British Geological Survey, Keyworth, Nottinghamshire, United Kingdom
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Abstract. This paper presents an online system that leverages social
media data in real time to identify landslide-related information auto-
matically using state-of-the-art artificial intelligence techniques. The de-
signed system can (i) reduce the information overload by eliminating
duplicate and irrelevant content, (ii) identify landslide images, (iii) infer
geolocation of the images, and (iv) categorize the user type (organization
or person) of the account sharing the information. The system was de-
ployed in February 2020 online at https://landslide-aidr.qcri.org/
landslide_system.php to monitor live Twitter data stream and has been
running continuously since then to provide time-critical information to
partners such as British Geological Survey and European Mediterranean
Seismological Centre. We trust this system can both contribute to har-
vesting of global landslide data for further research and support global
landslide maps to facilitate emergency response and decision making.

Keywords: Landslide detection · Social media · Online system · Real
time · Image classification · Computer vision · Artificial intelligence

1 Introduction

Landslides cause thousands of deaths and billions of dollars in infrastructural
damage worldwide every year [13]. However, landslide events are often under-
reported and insufficiently documented due to their complex natural phenom-
ena oftentimes triggered by earthquakes and tropical storms, which are more
conspicuous, and hence, more widely reported [15]. Therefore, any attempt to
quantify global landslide hazards and the associated impacts remains to be an
underestimation due to this oversight and lack of global data inventories [7].



2 F. Ofli et al.

Undertaking the challenge of building a global landslide inventory, NASA
launched a website4 in 2018 to allow citizens to report about the regional land-
slides they see in-person or online [11]. Following a similar Volunteered Ge-
ographical Information (VGI) approach, researchers further developed other
means such as mobile or web applications to collect citizen-provided data [5,
14]. While VGI-based solutions prove helpful, they are not easily scalable as
they require active participation of volunteers that opt in to use a particular
application to collect and share landslide-related data. Furthermore, this means
the bulk of data collection and interpretation still involves time consuming work
by specialists searching the Internet for news and reports, or directly engaging
in communications with those submitting information [14, 11, 24, 31].

To alleviate the need for opt-in participation and manual processing, we de-
veloped an online system equipped with state-of-the-art AI models to automati-
cally detect landslide reports posted on social media image streams in real time.
The system was developed through an interdisciplinary collaboration between
the computer scientists at the Qatar Computing Research Institute (QCRI) and
the earthquake and landslide specialists from the European-Mediterranean Seis-
mological Centre (EMSC) and the British Geological Survey (BGS), respectively.
The developed system employs several supervised machine learning models to
(i) deal with the noisy nature of the social media data by filtering out duplicate
and irrelevant images, (ii) detect landslide reports by interpreting the retained
images, (iii) infer the location information of the detected landslide reports from
the available metadata, and (iv) identify the type of users that have shared the
landslide reports. We deployed the system online in February 2020 to monitor
live Twitter data stream and has collected more than 54 million tweets and 15
million image URLs. Only about 2.5 million of these image URLs were deemed
unique and downloaded for further analysis. Eventually, the system identified
about 38,000 landslide reports worldwide, which corresponds to less than 1% of
the collected image URLs. and highlights the challenging nature of the problem.
Despite the challenging nature of the problem, quantitative verification of the
system’s performance during a real-world deployment shows that our system can
detect landslide reports with Precision=76% and Recall=74% (i.e., F1=75%).

2 Related Work

The literature on landslide detection and mapping approaches mainly uses four
types of data sources: (i) physical sensors, (ii) remote sensing, (iii) volunteers, and
(iv) social networks. Sensor-based approaches rely on land characteristics such
as rainfall, altitude, soil type, and slope to detect landslides and develop models
to predict future events [16, 27]. While these approaches can be highly accurate
at sub-catchment levels, their large-scale deployment is extremely costly.

Earth observation data from high-resolution satellite imagery has been widely
used for landslide detection, mapping, and monitoring [32]. Remote sensing tech-
niques either use Synthetic Aperture Radar (SAR) or optical imagery to perform
4 https://gpm.nasa.gov/landslides/index.html
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landslide detection in various formulations including classification, segmentation,
object detection, and change detection [17, 3, 30, 10, 25, 26]. While remote sensing
through satellites can be useful to monitor landslides globally, their deployment
can prove costly and time-consuming.

A few studies demonstrated the use of Volunteered Geographical Information
(VGI) as an alternative method to detect landslides [5, 14, 1, 2]. These studies
assume active participation of volunteers to collect landslide data where the
volunteers opt in to use a mobile or web application to provide information such
as photos, time of occurrence, damage description, and other observations about
a landslide event. On the contrary, our work capitalizes on massive social media
data without any active participation requirement and with better scalability.

Use of social media data for landslide detection has not been explored exten-
sively. The most relevant work by Musaev et al. [18, 20] combines social media
text data and physical sensors to detect landslides. In contrast, we focus on an-
alyzing social media images which can provide more detailed information about
the impact of the landslide event. To this end, our work complements prior art.

3 System Design

The system is designed to ingest data from an online social media platform (i.e.,
Twitter), process and analyze the incoming data, and persist relevant informa-
tion under the condition that all tasks must be performed in a time-sensitive
manner. Fig. 1 shows a high-level architecture of the system and its various crit-
ical components. Data flows from left to right through two types of connections
between components. The red lines indicate streaming connections whereas the
black lines represent on-demand connections. A streaming connection can be of
two types (i) a publisher-subscriber channel, and (ii) a push-pop queue.

3.1 Data Collectors

We have two types of collectors. One collects data (i.e., tweets) directly from
Twitter. The other one then downloads images corresponding to collected tweets.

Tweet Collector This module uses Twitter Streaming API5 to collect live
tweets. The Streaming API can provide data in various ways based on (i) a
list of keywords, (ii) geographical bounding boxes, or (iii) both. Our system
employs only the keyword-based data collection approach since the bounding box
approach provides only geo-tagged tweets which can be about any topic. Tweets
matching with at least one pre-specified keywords are acquired from Twitter
in JSON format and persisted into the Tweet Index, which is an Elasticsearch
database. If a tweet contains one or more images, its id and URLs of all images
are pushed to the Image Collector through a Redis6 queue.
5 https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-
realtime/guides/connecting

6 https://redis.io/
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Fig. 1: System architecture with important components and communication flows

Image Collector This module parses image-related attributes dispatched by
the Tweet Collector module and extracts image URLs and downloads corre-
sponding images. Due to re-tweets, same image URLs may appear multiple times
during the data collection. To avoid redundant downloads, the system keeps track
of previously seen image URLs in an in-memory linked hash map which has O(1)
time complexity for adding and searching an element and O(n) space complexity.
The downloaded images are saved on the file system and their paths and tweet
ids are pushed to the Image Manager queue for further processing.

3.2 Image Manager

The system has multiple modules that analyze images for different purposes.
Two of these modules, namely Junk Filter and Duplicate Filter, are tasked to
reduce the data noise by eliminating images that are (i) near-or-exact duplicate
and (ii) irrelevant for general disaster response, respectively. The third module,
Landslide Detector, is the core module that interprets each image as landslide or
not-landslide. All image processor modules are managed by the Image Manager,
which pops items from its queue and immediately dispatches to the three image
processors (i.e., Junk Filter, Duplicate Filter, and Landslide Detector) through
their respective queues. The Image Manager also monitors the output of all
image processors to persist them into the main Image Index.

Duplicate Filter Image-level deduplication is important to discard near-or-
exact duplicate images that are often due to high retweeting activity. This mod-
ule identifies duplicate images to prevent further processing as well as informa-
tion overload on end users. The module acquires images from its input queue
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and checks whether a given image is near-or-exact duplicate of previously seen
images. To this end, it first extracts features from each image using a deep learn-
ing model and then compares these features against an Image Feature Index to
detect near-or-exact duplicate cases based on a distance threshold. The image
feature index keeps a record of all unique images. If the module identifies a near-
or-exact duplicate, it returns the reference image’s id and the computed distance.
Otherwise, it tags the image as “not-duplicate”. If the image is “not-duplicate”,
then it is also inserted into the Image Feature Index. Section 4.1 presents details
of the feature extracting model.

Junk Filter Even though filtered through landslide-related keywords, the Twit-
ter image stream carries images not pertaining to landslide incidents. Identifying
these junk content is important to reduce information overload on end users. To
this end, the Junk Filter module pops images from the input queue and processes
them through the junk detection model, which outputs a class label (“relevant” or
“not-relevant”) and a confidence score. More detailed information about the junk
detection model is presented in Section 4.2. The processed images are pushed
into the output queue of the module.

Landslide Detector As the main objective of the system is to identify images
showing landslide incidents, in this module we perform this task using a deep
learning computer vision model. The module first acquires images from its input
queue and passes them through the landslide classifier, which outputs a class
label (“landslide” or “not-landslide”) and a confidence score. The landslide clas-
sifier is a deep learning image classification model that is presented in detail in
Section 4.3. The classified images are pushed into the module’s output queue.

3.3 Tweet Manager

The system contains three modules, namely Geolocation Tagger, User Type Iden-
tifier, and Named-Entity Recognizer, that process textual content for different
purposes. Specifically, Geolocation Tagger analyzes various tweet metadata fields
to infer geolocation information while User Type Identifier focuses on identifying
the type of Twitter account. Both modules use Named-Entity Recognizer to tag
text tokens with named-entities.

Geolocation Tagger Identifying the location of landslide incidents reported
on Twitter is an important task. A tweet reporting a landslide with some image
content may or may not have an explicit mention of the location in the text where
the incident took place. In that case, other meta-data fields are examined to find
location cues. These fields include, GPS-coordinates, Place, user location, and
user profile description. To this end, we use our geolocation tagging approach
presented in [9] with a different field priority order. We observed that most
tweets with landslide reporting images contain location cues in their text content.
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Therefore, if a tweet does not contain GPS-coordinates, we give high priority
to the location names mentioned in the text. Place, user location, and user
profile description come later in the order, respectively. The geolocation tagger
uses the named-entity recognizer to get named-entities for tweet text and user
profile description fields. The geolocation tagger uses Nominatim geocoding and
reverse geocoding APIs and tags each tweet with country, state, county, and
city information, when possible. More details of the geotagging approach can be
found in [9]. The module maintains a cache of processed locations to increase its
efficiency for recurring requests.

User Type Identifier This module uses the name of the tweet author to deter-
mine whether the account is of type person or organization. Landslide incidents
reported by personal accounts are more important for our end users than those
reported by organizational accounts. For this purpose, we use the English NER
model through the Named-Entity Recognizer module, which tags name tokens
with one of the several predefined named-entities, including PERSON.

Named-Entity Recognizer As described above, both Geolocation Tagger
and User Type Identifier modules use Named-Entity Recognizer to perform
their operation. To support these operation for multilingual tweets, we use five
NER models representing five international languages, including English, French,
Spanish, Portuguese, and Italian. Additionally, we use a multilingual NER model
(denoted as ML) for all other languages. All of these multilingual models are pub-
licly available at spaCy7. This module also maintains a cache of processed NER
requests to increase its efficiency for recurring requests.

4 Experiments

In this section, we first describe the design and development of our image models
and present experimental results. Then, we present performance evaluation and
benchmarking results for the most critical components of the system. For image
models, we follow the popular transfer learning approach based on convolutional
neural networks (CNNs) as many studies have shown that features learned by
CNNs are effectively transferable between different visual recognition tasks [6,
29, 23], particularly when training samples are limited.

4.1 Duplicate Filtering

The Duplicate Filter is responsible for extracting a feature vector from a given
image using a state-of-the-art deep learning model and comparing this feature
vector with the feature vectors of previously seen images based on a pre-defined
distance threshold d. For this purpose, we extract deep features from the penulti-
mate layer of a ResNet-50 model [8] pre-trained on the Places data set [33], which
7 https://spacy.io/usage/models



A Real-time System for Detecting Landslide Reports on Social Media 7

(a) Histogram of pairwise distances (b) MCC vs. duplicate threshold

Fig. 2: Optimal duplicate distance threshold determination: (a) Distribution of
the Euclidean distances between the image pairs in the duplicate test set. (b)
MCC performance as a function of distance threshold.

comprises 10 million images collected for scene recognition.8 Each feature vector
has a size of 2,048. To determine the optimal distance threshold d, we performed
experiments on a manually annotated set of 600 image pairs including 460 dupli-
cate and 140 non-duplicate cases with varying pairwise distances (Fig. 2a). We
used Euclidean distance metric (i.e., L2 norm) to measure the distance between
two image feature vectors. Note that image pairs with a distance greater than
12.5 looked trivially distinct, and hence, we did not include them in our exper-
iments. We then performed a grid search over a range of threshold values from
0 to 12 with a step size of 0.1 and measured the performance of each thresh-
old value by computing the Matthew’s Correlation Coefficient (MCC), which is
regarded as a balanced measure for imbalanced classification problems [4]. As
depicted in Fig. 2b, the optimal performance is achieved when the duplicate
distance threshold is d = 7.1.

4.2 Junk Classification

The Junk Filter employs a CNN model to determine whether an image is relevant
or not for general emergency management and response. To this end, we took
a ResNet-50 model [8] pre-trained on ImageNet [28], adopted its final layer to
binary classification task, and fine-tuned it on a custom data set introduced
by Nguyen et al. [21]. We merged the validation set with the training set, and
used the test set to evaluate the performance of the model as summarized in
Table 1a. We used Adam optimizer [12] with an initial learning rate of 10−6 and
configured the ReduceLROnPlateau scheduler to decay the learning rate by 0.1
with a patience of 50 epochs. We trained the model for a total of 200 epochs.
The training process of the junk classification model is plotted in Fig. 3a and
its performance evaluation is presented in Table 1b. The model achieves almost
perfect performance in all measures due to the distinct features between relevant
and not-relevant images in the training data set.
8 The pre-trained model is available at http://places2.csail.mit.edu/models_
places365/resnet50_places365.pth.tar (accessed on Jan 23, 2022).
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Table 1: Details of the data set used for training the junk classification model
and the performance of the trained model on the test set.

(a) Training data set

Class Train Test Total

Relevant 2,814 704 3,518
Not-relevant 2,814 704 3,518

Total 5,628 1,408 7,036

(b) Model performance (Acc: 98.79)

Class Precision Recall F1

Relevant 98.31 99.29 98.80
Not-relevant 99.28 98.30 98.79

Macro avg. 98.80 98.79 98.79

(a) Junk classification (b) Landslide classification

Fig. 3: Model training progress in terms of accuracy and loss achieved on the
training and validation sets

4.3 Landslide Classification

The Landslide Detector is the most important component of the proposed sys-
tem. Therefore, we performed a separate, comprehensive study to identify the
optimal configuration for the landslide classification model [22]. To recap, we
first created a large landslide image data set labeled by landslide specialists,
who are also co-authors of this paper. The data set contains 11,737 images,
which are split into training, validation, and test sets as shown in Table 2a.
Then, adopting a transfer learning approach, we conducted an extensive set of
experiments using various CNN architectures with different optimizers, learning
rates, weight decays, and class balancing strategies. The winning model configu-
ration is a ResNet-50 architecture trained using Adam optimizer with an initial
learning rate of 10−4, a weight decay of 10−3, and without a class balancing
strategy. Fig. 3b displays the training progress of the best performing landslide
classification model, which is also integrated into our system, whereas Table 2b
summarizes the performance of the model on the test set.

4.4 Performance Evaluation and Benchmarking

To stress-test the system and understand its scalability, we conducted perfor-
mance experiments on four critical modules, i.e., Duplicate Filter, Junk Filter,



A Real-time System for Detecting Landslide Reports on Social Media 9

Table 2: Details of the data set used for training the landslide classification model
and the performance of the trained model on the test set.

(a) Training data set

Class Train Val Test Total

Landslide 1,883 271 536 2,690
Not-landslide 6,332 902 1,813 9,047

Total 8,215 1,173 2,349 11,737

(b) Model performance (Acc: 86.97)

Class Precision Recall F1

Landslide 73.66 66.79 70.06
Not-landslide 90.45 92.94 91.68

Macro avg. 82.05 79.87 80.87
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Fig. 4: Latency (top) and throughput (bottom) of the Junk Filter, Duplicate
Filter, Landslide Detector, and Geolocation Tagger (left to right).

Landslide Detector, and Geolocation Tagger. We use latency and throughput, as
they are considered reliable measures to test a system’s performance. In our case,
the latency is the time taken by a module to process a given input load consisting
of images. Whereas, the throughput is the number of images processed in a unit
time (one second) given an input load. The experiments were conducted using
a pool of 50,000 images. We developed a simulator to mimic the functionality
of the Image Collector. The simulator pushed varying amounts of input loads to
Redis channels, which were then consumed by modules. Based on the real-world
deployment, we observed that the input load reaches a maximum of 0.08 images
per second (on average). Therefore, we tested a range of input loads defined
as 2n, n ∈ {0, 1, ..., 12}. We performed the tests on a Linux server with 256GB
RAM, 2.2 GHz processor with 32 cores and two Tesla V100 GPUs with 16GB.

Fig. 4 shows the performance results. The latency for all modules follows
the same pattern, i.e., as the input load (per second) increases, the latency also
increases. However, as the computational responsibilities of each module differ,
so do their latencies at different input loads. For instance, both Relevancy Filter
and Landslide Detector show a decent latency of around five seconds even at
1024 input load. The Duplicate Filter, however, exhibits high latency (i.e., 29
seconds) at the same load. The latency for Geolocation Tagger is measured with
and without cache, which makes a significant difference. The cache keeps a record
of all existing unique requests and hence, on average, the latency of the cached
version is about four times less.
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Fig. 5: Snapshot of the online system

In terms of throughput, Relevancy Filter and Landslide Detector maintain a
high throughput of more than 400 images/second, even at the maximum input
load. Throughput for Junk Filter reaches module capacity at 467 images/sec-
ond on average and for Landslide Detector it goes up to 457 images/second on
average. For Duplicate Filter, the throughput initially increases but then starts
decreasing as the size of Image Feature Index grows. The throughput is also
about 4 times higher on average with cache compared to without cache. Geolo-
cation Tagger reaches its capacity at about 50 images per second with cache.
With an empty cache, it goes as high as 21 images per second on average with
cache and is expected to increase as the cache grows in size.

5 Real-world Deployment

Here we present details about our real-world deployment including data collec-
tion and statistics, quantitative verification of the detected landslide reports,
and a comparison with a text-based approach.

5.1 Data Collection and Statistics

In February 2020, we launched the system online at https://landslide-aidr.
qcri.org/landslide_system.php to monitor live Twitter stream for landslide-
related reports. Fig. 5 shows a snapshot of the system dashboard. It is important
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Table 3: List of all keywords in 32 languages used for data collection.

to note that, by landslide, we refer to all downward and outward movement of
loosen slope materials such as landslip, debris flows, mudslides, rockfalls, earth-
flows, and other mass movements. As mentioned in Section 3.1, the system fol-
lows a keyword-based data collection strategy. Hence, we curated a list of 339
multilingual keywords covering all types of landslides in 32 languages including
English, Albanian, Arabic, Basque, Bengali, Bosnian, Catalan, Chinese, Croat-
ian, Dutch, French, Georgian, German, Greek, Hindi, Hungarian, Indonesia, Ira-
nian, Italian, Japanese, Korean, Malaysia, Philippines, Polish, Portuguese, Ro-
manian, Russian, Sesotho, Slovenian, Spanish, Swedish, and Turkish (Table 3).

Since its deployment until December 31, 2021, the system has collected more
than 54 million tweets and 15 million image URLs, out of which about 2.5
million were deemed unique and downloaded for further analysis. Fig. 6 depicts
the weekly volume of raw tweets and images collected during this time period as
well as the distributions of images filtered by the Junk Filter, Duplicate Filter,
and Landslide Detector. The data do not show any gaps, which is an important
factor for robust monitoring of real-world events continuously. On average, the
Junk Filter eliminates around 76% of the collected images, the Duplicate Filter
further reduces the redundancy by an additional 9%, and finally, the Landslide
Detector classifies only about 0.84% of the remaining 15% images as landslides.
This corresponds to a significant (i.e., more than 99%) reduction of information
overload for our end users. Of all the detected landslide reports, 6,523 were shared
by personal accounts and 4,553 by organizational accounts. Fig. 7 shows the
worldwide distribution of the detected landslide reports while Fig. 8 highlights
the top-10 countries with the highest number of landslide reports in each quarter.
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Fig. 6: Weekly distributions of raw tweets and images as well as the relevant,
non-duplicate, and landslide images (y-axis is in log scale).

Fig. 7: Worldwide distribution of the collected landslide reports

We see that US, Ecuador, Colombia, and India experience significant landslides
all year round. For India, landslides become even more prevalent in Q3. Likewise,
Mexico experiences a significant increase in Q3. In contrast, prominent landslides
in Indonesia and Malaysia happen in Q1 and Q4 whereas in the UK they occur
more in Q1 and Q2. Turkey experiences most landslides in Q1 through Q3.

5.2 Validation of the Landslide Model Predictions

Although the system has collected more than 2.5 million images since its deploy-
ment in February 2020, there are only about 17,000 images labeled as landslide
(or 38,000 images including near-and-exact duplicates), which corresponds to
less than 1% of the total volume. This highlights the difficulty of the task even
though a carefully curated set of landslide-related keywords has been used to
collect data from Twitter. To validate the performance of the landslide model in
the real-world deployment, we sampled N=3,600 tweets with images collected by
our system. To avoid overburdening our landslide specialists with noisy data as
well as to warrant robust statistics, we sampled only from the subset of tweets
with images labeled as non-duplicate and relevant. Our landslide specialists then
reviewed these images and annotated them with ground-truth landslide/not-
landslide labels. Eventually, we compared the machine-predicted labels with ex-
pert annotations to evaluate the performance of the landslide model in a real-
world scenario. Table 4 summarizes the number of correct (i.e., True Positive
(TP) and True Negative (TN)) and incorrect (i.e., False Positive (FP) and False
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Fig. 8: Top-10 countries with the highest landslide reports in each quarter

Table 4: Validation of landslide model predictions
TP FP FN TN Total

123 39 43 3,395 3,600

Accuracy Precision Recall F1 MCC

97.72 75.93 74.10 75.00 73.81

Negative (FN)) predictions together with the corresponding performance scores
such as accuracy, precision, recall, F1, and MCC. Overall, we see that the perfor-
mance of the model in a real-world scenario is comparable to the results achieved
in our experiments (Section 4.3).

5.3 Comparison with a Text-based Approach

Text-based landslide detection is a nascent problem where only a couple of stud-
ies have addressed so far [19, 20]. Since these studies did not share their data sets
and models, we do not have any off-the-shelf text-based landslide classification
model to use as a baseline in our study. Therefore, we consider an alternative
scenario with a proxy text classification model based on lexicon (i.e., keyword)
matching, which is already implemented in our system. That is, we assume all
the retrieved tweets are already labeled as landslide by a hypothetical model. We
then use the previously sampled set of tweets with their expert annotations to
compute the precision of a lexicon-based text model. Unsurprisingly, we found
that the lexicon-based text model achieved only about 5% precision (i.e., only
about 5% of the tweets retrieved were indeed related to landslides) while the
image classification model achieved 76% precision as reported before.

6 Conclusion

In this paper, we presented a system that was developed through an interdisci-
plinary collaboration between the computer scientists at the Qatar Computing
Research Institute (QCRI) and the earthquake and landslide specialists from the
European-Mediterranean Seismological Centre (EMSC) and the British Geolog-
ical Survey (BGS), respectively. The developed system leverages online social
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media data in real time to identify landslide-related information automatically
using state-of-the-art artificial intelligence techniques. The designed system (i)
reduces the information overload by eliminating duplicate and irrelevant content,
(ii) identifies landslide images, (iii) infers their geolocation, and (iv) categorizes
the user type (organization or person) of the account sharing the information.
We presented results of our model development as well as system performance
evaluation and benchmarking experiments. We demonstrated the system’s suc-
cess with a real-world deployment. We believe that our system can contribute
to harvesting of global landslide data and facilitate further landslide research.
Furthermore, it can support global landslide susceptibility maps to provide sit-
uational awareness and improve emergency response and decision making.
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Abstract 
The development of a system that monitors social media continuously for general landslide-
related content using a landslide classification model to identify and retain the most relevant 
information is described and validated.  The system harvests photographs in real-time from 
these data and tags each image as landslide or not-landslide.  A training model was 
developed with input from computer scientists, geologists (landslide specialists) and social 
media specialists to establish a large image dataset that has then been applied to the live 
Twitter data stream.  The preliminary model was developed by training a convolutional 
neural network on the dataset. Quantitative verification of the system’s performance during 
a real-world deployment shows that the system can detect landslide reports with 
Precision=76%.  The demonstrator model is currently running live; the next stage of 
development will incorporate stakeholder and user feedback.  

Keywords (6 max) 
Landslides, triggered-landslides, image-labelling, Artificial Intelligence, database 

Introduction 

The reporting of landslides and their impacts (damage and loss) varies widely across the 
globe reflecting a range of physical and socio-economic drivers and contexts.  This means 
that any attempt to quantify global landslide hazards and the associated impacts is an 
underestimation (Froude and Petley, 2018).  Landslides often occur in a multi-hazard 
cascading environment triggered by other more conspicuous, and therefore more widely 
reported, hazards such as earthquakes and tropical storms (Lee and Jones, 2004).  
Consequently, impacts such as the number of fatalities caused by landslides themselves are 
underestimated because they can be incorrectly reported as being the result of the trigger 
event, e.g. earthquake (Kjekstad and Highland, 2008).  Further, global studies have confirmed 
that fatalities attributed to non-seismically induced landslides were underestimated in the 
International Disaster Database (EM-DAT).  Between 2004 and 2010, Petley (2012) estimates 
that the EM-DAT database under-reported the number of fatalities by 2000% whilst between 
2007 and 2013, Kirschbaum et al. (2015) found this under-representation to be by 1400%. 
These numbers are an order of magnitude greater than previous studies had indicated and 
highlight inaccurate quantification and thus appreciation of the true impacts of landslides, 
resulting in poor prioritisation of global-scale landslide research and mitigation (Petley, 2012).  
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National and regional landslide databases have been established in many countries to 
document and map hazard events and their associated damage and losses over time e.g., in 
Europe (Haque et al., 2016; Herrera et al., 2018), India (National Disaster Management 
Guidelines, 2011), China (Shi et al., 2000), Japan (National Research Institute for Earth 
Science and Disaster Prevention, 2021), Africa (Broeckx et al., 2018), Canada (Public Safety 
Canada, 2013), the Caribbean (van Western et al., 2016), the United States of America (Jones 
et al., 2019), New Zealand (Rosser et al., 2017), Australia (Geoscience Australia, 2012), 
globally (Froude and Petley, 2018; Juang et al., 2019; NASA Landslide Reporter, 2018) and 
globally for non-specialists (ThinkHazard!, 2020).  These databases have various applications 
including scientific research, the creation of landslide susceptibility maps (e.g., Foster et al., 
2012; Damm and Klose, 2015), Disaster Risk Reduction (e.g., Han et al., 2021), planning (e.g., 
Gibson et al., 2012), landslide forecasting models (e.g., Kirschbaum and Stanley, 2018) and 
the building of resilience to or documenting impacts of climate change (e.g., Andersson-Sköld 
et al., 2013; Wood et al., 2020).  Databases vary depending on the states of wealth, politics 
and governance, education, insurance and the availability of institutions willing and able to 
maintain such databases, as well as the landslide strategies adopted by the host nation or 
region (Herrera et al., 2018).  Whereas the physical location and dimensions of landslides 
form the backbone to many landslide databases, the associated impacts (i.e., damage and 
loss) are much less catalogued despite this being a main component of Disaster Risk 
Reduction (Corominas et al., 2014; Herrera et al., 2018).  This is due to multiple factors and 
challenges associated with, and varying priorities for, capturing data as well as difficulties in 
using international standards at different scales (Gunawan and Aldridge, 2018; United 
Nations Development Programme, 2013). 

Historically, national and regional landslide databases have required substantial investment 
to enable the manual trawling of maps, aerial photographs, scientific papers, reports and the 
printed news media for data population (e.g., Geomorphological Services Limited, 1986/7; 
1989).  The British Geological Survey (BGS) estimates that an average year may require 180 
staff hours spent manually trawling the news and social media for data on UK landslides.  This 
work feeds into the UK National Landslide Database (Foster et al., 2012), which underpins 
much of the landslides research carried out by this national geological survey such as the 
Daily Landslide Hazard Assessments for the Natural Hazard Partnership 
(http://naturalhazardspartnership.org).   

Landslide data-gathering processes have changed considerably over the last two decades as 
digital technology, data availability, earth observation techniques, database standards and 
software interoperability have improved (e.g., European Commission, 2021a).  The use of 
smartphones has increased the incidence, detail and speed of data reported (Niles et al., 
2019) where, in general, information (including photographs) of landslides are published on 
social media inherently because they have had an impact for humans of some kind 
(Pennington et al., 2015).  Indeed, dedicated citizen science smartphone applications have 
been developed specifically for hazard data capture by non-specialists, the benefits and 
challenges of which are discussed in Lee et al. (2020) and Bossu et al. (2015; 2016). 
LastQuake (https://www.emsc-csem.org; Bossu et al., 2018; Steed et al., 2019) is a successful 
example for earthquakes where eyewitnesses can share their felt experiences as well as 
pictures and videos, data which aim to improve rapid situational awareness (Bossu et al., 
2020).  myHaz-VCT (https://oda.bgs.ac.uk) is focused geographically on St Vincent and the 
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Grenadines and collects photographs, videos and free-text descriptions on a range of natural 
hazards including flooding, storms, landslides, earthquakes, volcanoes, tsunamis and other 
environmental phenomena such as drought, ground subsidence and changes in water levels 
(Duncan et al., 2019). 

At the time of writing, there are two known smartphone applications for the specific 
acquisition of landslide data, both of which require active participation by the user: Landslide 
Monitoring App (LaMA) in Turkey (Kocaman and Gokceoglu, 2019) and the Landslide 
Information System (LIS) in Hong Kong (Choi et al., 2018).  Collecting data on landslides 
through such applications is challenging in terms of user engagement and retention; it is far 
less common to witness a landslide than an earthquake or a flood, for example, due to them 
being highly localised.   

Elsewhere, the use of citizen science has mostly extended to inviting the public to contact the 
researchers through online portals, web forms or via email.  Examples include ‘Report a 
Landslide’ by the BGS (2021a), as well as their engagement via social media, and the ‘Report 
a landslide’ and ‘Did You See It?’ public engagement (Baum et al., 2014) carried out by the 
United States Geological Survey, now superseded by the NASA Landslide Reporter (Juang et 
al., 2019). An example of a regional study is Kostelnik et al. (2021) where non-specialists are 
invited to ‘Report an event’ for the Bond Fire Debris Flows in California. 

Perceptions of what constitutes reliable information are evolving to include unstructured 
data, such as that published on social media.  This is now becoming more valued as a tool to 
record hazard and hazard impact information, particularly as it can include eye-witness 
accounts and facilitate the reconstruction of events (Kocaman and Gokceoglu, 2019; Cieslik 
et al., 2019).  To add weight to this, it has become increasingly recognised that news media 
sources have reporting biases, such as factual accuracy or not reporting at all due to 
prioritisation of other news (Guzzetti and Tonelli, 2004; Moeller, 2006; Pennington and 
Harrison, 2013).  Despite this however, the bulk of data collection and interpretation still 
involves time consuming work by specialists searching the Internet for news and social media 
reports, directly engaging in communications with those submitting information and then 
interpreting the data received (Kocaman and Gokceoglu, 2019; Juang et al., 2019; Pennington 
et al., 2015; Taylor et al., 2015).   

Under-representation in landslide databases can feed through to emergency planning and 
preparedness for landslide response when natural disasters occur, particularly in areas for 
which regional landslide susceptibility mapping has not been completed. In such regions, 
especially if they are remote with poor access to communication technologies, international 
responses to natural disasters are supported by attempts to better understand the 
distribution of triggered landslides, e.g. Nepal where over 4,000 landslides were mapped 
using satellite imagery after the Gorkha earthquake in 2015 (Lacroix, 2016). It is important to 
understand both where landslides may have impacted communities with potential damage or 
loss of life, and where they may affect transport routes and impede emergency response 
activities. For the latter, even small landslide events can block major transport routes so 
these are particularly important to identify.  In multi-hazard scenarios timely understanding 
of impacts such as damming of rivers may be important in terms of protecting communities 
from consequential flooding for example.   
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When natural disasters occur, their impacts are usually not discovered beyond the attention 

of first responders or government agencies until the news media are able to attend the scene 

or, for example in remote areas, once satellites have been able to collect imagery and their 

responding communities have activated the Disaster Charter (https://disasterscharter.org) 

and processed the data.  There is currently an estimated time lag, or data latency, ranging 

from several hours to several days from when a disaster happens and reliable spatial data 

becoming available to users, particularly with respect to satellite data (NASA, 2020; 

Copernicus, 2020; Kaku, 2019; Voigt et al., 2016).  Data latency is associated with the satellite 

return path and the route that it takes, image quality and processing time.  Landslides can be 

associated with rainfall or volcanoes meaning satellite data acquisition can be delayed due to 

poor image quality caused by cloud cover or whether the satellite passes the area in the day 

or night (Santangelo et al., 2022).  Interpretation of these images also requires considerable 

effort by specialists although recent work aims to speed this process up using automatic 

image recognition (Mondini et al; Yi et al., 2020; Yang et al., 2019; Ji et al., 2020; Gudžius et 

al., 2021).   

Aims 
Social media data allow access to a rich source of human information such as text, videos, 

photographs, timestamps and coordinates (e.g., Lacassin et al., 2020; Alam et al., 2018).  In 

2021, there were 3.78 billion social media users worldwide (Mohsin, 2021) and acquiring 

disaster data through these platforms has gathered pace, particularly over the last decade. 

This is, however, an inherently imperfect information source when compared to conventional 

sensors, aerial imagery or expert interpretation, but it provides large quantities of data, in 

near-real-time and at spatial densities that may exceed conventional sensor networks and 

this can complement data from other sources (Li et al., 2021).  While these data have great 

potential for disaster management, they are noisy and it is difficult for disaster managers to 

extract relevant and timely information (Phengsuwan et al., 2021; Alam et al., 2017). 

With an aim to tackle the aforementioned issues, this paper explores a well-known 

microblogging platform, Twitter, to identify landslide-related posts, specifically those with 

images containing landslides.  Twitter allows users to read and post short messages called 

‘Tweets’. Tweets are limited to 280 characters and photos or short videos can be included. 

Tweets are posted to a publicly available profile or can be sent as direct messages to other 

users.  In 2019, Twitter had 330 million monthly active users and 145 million daily active 

users; a total of 500 million Tweets were sent by Twitter users every day, equivalent to 5787 

Tweets per second (Phengsuwan et al., 2021).  

In this paper, a new methodology is presented that harvests landslide photographs from 

Tweets automatically and in real-time.  To do this, different types of noise and irrelevant 

content that that can be associated with landslide-related social media imagery data are 

identified. Moreover, a further aim is the annotation and release of a dataset for the 

community to develop image filtering and landslide detection tools.  The specific objectives 

of this paper are: 
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1. Novel qualitative analysis of a non-traditional data source (Twitter) for capturing landslide 

reports 

2. Image labelling methodology for landslide classification 

3. Expert-labelled dataset consisting of 11,737 images 

A similar study was undertaken by Can et al. (2019) who used a smaller image dataset from 

different sources and recommend further work with a larger dataset before their algorithm 

can be used without manual intervention.  The work presented here involves more extensive 

model training experiments and a larger dataset. 

We suggest that the methodology and labelled dataset will help the disaster management 

community build tools to detect landslide images automatically from social media, with 

potential for incorporation in multi-hazard impact assessment workflows alongside other 

established methods.  Moreover, we anticipate that such a tool will improve response times 

for first responders.  This will enable responders to add information pertaining to their 

understanding of what is happening on the ground in near-real-time providing data from 

those affected as soon as it is published on social media.  

This interdisciplinary work is the result of the collaboration between computer scientists, 

earthquake-, social media- and landslide hazard specialists.  The initial objective was for the 

earthquake-triggered landslides to be reported to the European Civil Protection Unit as this 

hazard can hamper rescue operations.  The objective was then extended to incorporate all 

landslides regardless of their trigger.  This tool will be open for any institute wanting to speed 

up social media harvesting on this topic. 

Supervised Machine Learning Approach 
The process of using Artificial Intelligence (AI) or Machine Learning (ML) for the identification 

of landslides in photographs typically requires two steps: (1) create a large, labelled dataset 

for the task at hand, and (2) train a ML model to achieve the desired classification task.  

Figure 1 shows a graphical representation of the workflow.  This training dataset contains a 

collection of photographs showing particular characteristics associated with landslides.  To 

create a diverse dataset, we curated a total of 11,737 images from three data sources: 

Google, Twitter and BGS’s image database: GeoScenic (BGS, 2021b). 6,284 images were 

downloaded from Google by querying landslide-related keywords such as landslide, landslip, 

earth slip, mudslide, rockslide and rock fall.  We developed a multi-lingual list currently 

comprising 339 keywords in 32 languages: English, Albanian, Arabic, Basque, Bengali, 

Bosnian, Catalan, Chinese, Croatian, Dutch, French, Georgian, German, Greek, Hindi, 

Hungarian, Indonesia, Iranian, Italian, Japanese, Korean, Malaysia, Philippines, Polish, 

Portuguese, Romanian, Russian, Sesotho, Slovenian, Spanish, Swedish, and Turkish (Appendix 

1).  A total of 1,153 images were collected from Twitter through its Streaming API using the 

same keywords. In addition, 4,300 photographs were donated by the GeoScenic database 

that were known to be associated with fieldtrips involving landslides. Three landslide 

specialists, co-authors of this paper, then carried out an independent yes/no landslide 

interpretation on the 11,737 photographs using the methodology described below.  Figure 2 

shows examples of collected photographs divided into ‘landslides’ and ‘not landslides’ that 
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demonstrates the kind of noise associated with image harvesting.

 

Figure 1 Graphical representation showing the workflow for the development of the training model. 

Photographs BGS © UKRI [2022]. 

Landslide  Not Landslide 

  

 

  

  

 

  

Figure 2 Examples of images collected showing landslides and examples of noise (not landslides) 

Photographs BGS © UKRI [2022] 

Although manually curated, keywords were used to acquire images from Twitter and Google; 

the resultant images are not always related to landslides and often contained irrelevant and 

noisy content. This demonstrates why the use of text-based data collection alone is not 

enough to gather landslide-related reports from social media or the Internet.   While the 
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images from the GeoScenic database were known to be associated with fieldtrips involving 

landslides, the set included both landslide and non-landslide photographs.  Therefore, the 

collected images needed to be evaluated manually by the landslide specialists. Since the AI 

task is “given an image, recognise landslide” without any other external information or expert 

knowledge available to the AI model, the landslide specialists were tasked to devise a 

labelling methodology while keeping this “computer vision” perspective in mind.  

Expert-labelling methodology 
The decision-making process carried out for the purpose of training the computer model to 

identify landslide features in photographs differs from conventional desk- or field-based 

landslide identification familiar to the geologist.  Expert assessment of photographs involved 

the application of several assumptions as outlined in the following methodology.   

1. There is no contextual knowledge or previous understanding of the landslide.  A data-

gathering exercise would usually be carried out by landslide specialists to gain as much 

ground information as possible before any interpretations are made.  This requires a 

different approach.  Here, information such as any landslide nomenclature, ground 

conditions, antecedent meteorological context or geographic region are excluded from the 

decision-making process. 

2. Each photograph must be treated in isolation.  This may show all or part of a landslide and 

is confined to one viewpoint.  Ideally, conventional landslide analysis involves viewing the 

landslide from several different perspectives and scales before an interpretation is made. 

3. The model does not discriminate landslide ‘type’ (i.e. Hungr et al., 2014; Cruden and 

Varnes 1996), but aims to recognise zones of depletion (where the material has come from) 

and accretion (where it has been deposited).  This excludes, therefore, events where the 

landslide debris has been removed by coastal or fluvial erosion or where a landslide has been 

remediated. 

4. The model aims to show contemporary landslides.  This means older but perhaps still 

active or dormant landslides are omitted from the model.  Examples of this may include 

landslides that are slow moving or cyclic but are nonetheless active.  Fully vegetated 

landslides may also fall into this category if there is no exposure of geological materials (e.g., 

rock or earth; Figure 3). 

5. In order to train the model there was a requirement for a clear representation of a 

landslide as the major component of the image (e.g., Figure 4). 

6. Where representation was borderline, consideration was given to whether the end user 

would be concerned by the image being returned as a landslide, e.g., in the situation where 

another geomorphological feature such as a retaining wall or a sinkhole might be returned as 

a landslide. Borderline cases are broadly grouped as (Figure 5A) backscarps and extensional 

that could be faults, (Figure 5B) material engulfing buildings that could be the landslide 

deposit but could also have formed through other natural or manmade processes, (Figure 5C) 

debris falling onto roads that could be a landslide deposit or vegetation or mixed debris not 
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associated with landsliding and (Figure 5D) rivers in flow or flood channels that have a similar 

appearance to debris flow channels. 

 

Figure 3 Example of a completely vegetated landslide (flow) that would be excluded from the dataset. 

BGS © UKRI [2022]. 
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Figure 4 An example of where there is a clear representation of a landslide as a major component of 

the photograph BGS © UKRI [2022]. 

   

  

Figure 5 Examples of borderline classes.  A: This image could be a landslide backscarp or a fault; B: 

Material engulfing buildings; C: Debris falling onto a road; D: Rivers in flow or channels that have a 

similar form to debris flow type landslides. Photographs BGS © UKRI [2022]. 

A 

D C 
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Once the dataset creation and model training stages were completed, the demonstrator 

model was run using Twitter images in real-time.  Figure 6 illustrates the workflow involved in 

collecting, tagging and classifying images as ‘landslide’ and ‘not landslide’.   

 

Figure 6 Graphical representation illustrating the workflow involved in collecting, tagging and 

classifying images from Tweets as 'landslide' and 'not landslide'. Photographs BGS © UKRI [2022]. 

Expert-labelling results 
Using the methodology outlined above, the three landslide specialists carried out 

independent yes/no interpretations of 11,737 photographs.  In order to ensure reliability of 

the final labels, an analysis was carried out to measure their agreement using two statistical 

measures: Fleiss’ Kappa (Fleiss, 1971) and percentage agreement (observer agreement).  

Despite the inherent difficulty of the labelling task, the three landslide specialists achieved 

good overall agreement.  An overall Fleiss’ Kappa score of 0.58 was achieved, which indicates 

an almost ‘substantial’ inter-annotator agreement between the three landslide specialists.  

The percentage agreement is 76%, which is only slightly below the 80% mark set as a rule-of-

thumb by Bayerl and Paul (2011).   

Since the ultimate goal is to develop a system that will monitor the noisy social media 

streams continuously to detect landslide reports in real-time, negative (i.e., not-landslide) 

images were also retained in the dataset to represent completely irrelevant cases (e.g., 

cartoons, advertisements, selfies) as well as difficult scenarios (i.e., those which may look 

similar to landslides) such as post-disaster images from earthquakes and floods in addition to 

other natural scenes without landslides for model training purposes.  The distribution of the 

images in the final dataset across different categories and data sources are summarised in 

Table 1.   
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As suggested by the table, only about 23% of the images are labelled as landslide in the final 

dataset.   This shows an imbalanced class distribution, which presents a challenge in model 

training simply because the model may decide to always predict not-landslide and achieve 

77% accuracy (because of the skew in the distribution) but this would not be useful at all. 

Solutions to problems like this (i.e., finding a needle in the haystack) do always need to deal 

with the class imbalance issue meaning the training set presented here reflects this realistic 

scenario. 

Table 1 Distribution of the images across different categories and data sources 

 Google Twitter BGS Total 

Landslide 1,240 598 852 2,690 

Not-landslide 5,044 555 3,448 9,047 

Total 6,284 1,153 4,300 11,737 

 

Demonstrator model results 
Since the focus of this study is to establish a methodology for the landslide dataset creation, 

a technical paper, conducted in conjunction with this study, describes the underpinning ML 

theory and presents a detailed experimental approach to the model development step (Ofli 

et al., 2021).  The demonstrator model presented here is developed by training a 

convolutional neural network on the dataset introduced in this paper.  Quantitative 

verification of the system’s performance during a real-world deployment shows that our 

system can detect landslide reports with Precision=76%. 

We deployed the system online in February 2020 to monitor the live Twitter data stream and 

it has collected more than 54 million tweets and 15 million image URLs. Only about 2.5 

million of these image URLs were deemed unique and downloaded for further analysis. The 

system identified about 38,000 landslide reports worldwide, which corresponds to less than 

1% of the collected image URLs and highlights the challenging nature of the problem.  More 

details about this system deployment can be found in Ofli et al. (2022).  Below, we evaluate 

the performance of this demonstrator model on a few example images with the help of heat 

maps or class activation maps (Zhou, 2016), which highlight the discriminative parts of a 

photograph that the model is paying attention to (Tables 2 and 3). 
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Table 2 Photographs identified as containing a landslide showing the class activation map 

interpretation generated by the system. [Class activation map produced by QCRI Contains BGS © UKRI] 

Original photograph Class Activation Map interpretation Confidence  

  

100% 

  

100% 

  

98.7% 
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Table 3 Photographs identified as NOT containing a landslide. [Class activation map produced by QCRI 

Contains BGS © UKRI] 

Original photograph Heat map interpretation Confidence 

  

99.9% 

This is a 

rock 

exposure, 

not 

landslide 

  

99.9% 

A field, not 

landslide 
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Discussion 
The aim of this work was to develop a system that monitors social media continuously and in 

real-time for general landslide-related content, using the landslide classification model to 

identify and retain the most relevant information.  The system harvests photographs from 

these data and tags each image as landslide or not-landslide.  A training model was 

developed through interdisciplinary working by the authors to establish a large image dataset 

that has then been applied to the live Twitter data stream. 

The demonstrator model is currently running live and landslide images are being harvested in 

real-time (https://landslide-aidr.qcri.org/landslide_system.php).  This is publicly available and 

users can filter by date and country as well as being able to explore data spatially via a map 

interface.  The map interface uses a range of factors to geolocate data markers.  The current 

version prioritises location-based text within Tweets over geolocation data or stated location 

of the user.  While not perfect, this allows the map to display landslide sites and prevents it 

from becoming purely a representation of user locations.  If geolocation data are used, the 

location is downgraded to adhere to rules around viewing geodata (Twitter, 2022a, b) and to 

protect user privacy.  Future improvements to locating data are discussed below. 

Also available on the demonstrator model website is the list of keywords from Appendix 1 

used to initially extract Tweets.  We invite users to provide feedback on both the 

demonstrator itself and the list of keywords via the link above.  Once feedback has been 

collated, we plan to carry out future iterations to move this work from a demonstrator model 

to an operational service. 

The image interpretation process used by the three landslide specialists was iterative in the 

initial phase of work.  To maintain consistency of agreement, the methodology described 

above was established through much interdisciplinary discussion, which led to a phase of 

reinterpretation. While this put demands on the landslide specialists, the combined 

understanding produced this novel methodology with high levels of agreement. 

The methodology aimed to identify landslide features, but the task was not to discriminate 

scale, meaning that images labelled as landslides may be very small (<1m and not strictly a 

landslide) and aerial photographs including multiple landslide events are not captured by the 

model (e.g., Figure 7).  Further iterations of this work could use more sophisticated object 

detection or image segmentation techniques to solve this issue.  

Future work will include a Geolocation Inference module that will use Tweet metadata to 

geolocate images following the approach used by Imran et al. (2022) for spatial analysis of 

various factors associated with the COVID-19 pandemic.  An automated real-time geographic 

representation of landslide locations will be developed.  Understanding the location of 

landslides is an important element of this work as there may not be the magnitude of data 

compared to other hazards such as earthquakes.  However, there are ethics to be considered 

as part of this location-based work such as that adopted by the UK government through the 

Data Ethics Framework (UK Government, 2020) and the Locus Charter (2021).  The work 
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described in this paper could also be adapted to complement other hazard inventories, such 

as snow avalanches. 

  

Figure 7 Examples of photographs that demonstrate the issue of scale.  (Left) a small area (<1m) of 

mixed debris, BGS © UKRI [2022] (Right) an aerial photograph showing multiple landslide deposits 

across a large area [Photograph supplied under licence © KYODO Kyodo/Reuters Pictures]. 

It is important to reiterate that this work is not intended to be used in isolation during a 

disaster scenario.  As well as the inherent noise within the data content itself, there are 

inaccuracies that could, for example in the worst case, hinder rescue operations if not 

combined with other data sources.  Disaster managers should note that this work does not 

take into account: 

1. Areas without mobile or internet coverage (even if temporary).  As natural hazards cause 

damage to infrastructure, this may lead to mobile phone or internet outages meaning 

information cannot be published to social media.   

2. The geographical variation in population density.  In densely populated areas, there are 

likely to be more relevant Tweets due to numbers of people that could skew the data 

away from less densely populated areas that may have suffered greater damage. 

3. Variations in use of social media (i.e. Twitter) as a result of trends in national or regional 

uptake or demographics.   

4. Photographs that are embedded as thumbnails in web page links in Tweets.  For example, 

an article published by the news media with photographs that was included in a Tweet is 

currently excluded. 

For these reasons, the authors recommend that this work is used as a tool to provide 

additional information to established workflows for disaster management. 

For landslides research, such as that involving national or regional landslide databases, it is 

hoped that this work will introduce considerable efficiency savings for institutions responsible 

for maintaining this workflow. Images of landslide events and impacts will be available 

automatically and social media is trawled in a systematic and continuous way.  This has been 

adapted to the terminologies used in different countries through the list of keywords.  The 

authors would like to improve this list to make the operational model more accurate. 
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Conclusion  
This paper demonstrates the potential application of artificial intelligence for landslide 

recognition in images harvested from social media.  In this study, we aimed to develop a 

model that can detect landslides in social media image streams automatically and in real-

time.  For this purpose, we created a large image collection from multiple sources with 

different characteristics to ensure data diversity. The collected images were assessed by 

three landslide specialists independently to attain high quality labels with almost substantial 

inter-annotator agreement.  The assessment methodology is described and is the result of 

interdisciplinary working between geologists, computer scientists and social media 

specialists.  The resulting model achieved high performance in terms of accuracy scores, 

which can be deemed sufficient for the purpose.  The demonstrator model is publicly 

available and running in real-time and the authors invite feedback.  There are a number of 

potential applications for this research. In this account image processing has been focused on 

“fresh” landslides as evidenced by the exposure of geological materials, which lends itself to 

the focus on the potential for Disaster Risk and Resilience.  This paper is published in 

association with a technical paper that describes the model in detail. 
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Appendix 1 
 

List of all keywords in 32 languages used for data collection 

 
landslide, landslides, rockfall, rock-fall, rockslide, rockslides, mudslide, mudslides, mudflow, mudflows, 
landslip, earthslip, Sturzstrom, avalanche, glissement de terrain, glissements de terrain, chute de pierres, 
coulée de boue, effondrement, avalanche, frana, frane, crollo di roccia, crolli di roccia, caduta massi, cadute 
massi, smottamento, smottamenti, slavina, slavine, lliscament de terra, esllavissada de terra, Despreniments 
de roques, colada de terra, corriment de terra, allau, Esllavissaments superficials, Deslizamiento, 
deslizamiento de tierra, caída de roca, desprendimientos de rocas, deslizamiento de rocas, avalancha de 
barro, deslizamiento de barro, deslizamiento de lodo, Colapso, tanah runtuh, kejatuhan batu, tanah runtuh, 
lumpur, tanah longsor, batu jatuh, guguran, lahar, longsoran besar,  ,انهيار أرضي , انزلاق أرضي , سقوط صخري
 ,انهيار صخري , الانهيارات الصخرية, الإنزلاق الطيني , الإنزلاقات الطينية, الانزلاق الأرضي ، انزلاق الأرض, الانهيار الجليدي
оползень, оползни, зсув, зсув грунту, зсув ґрунту, обвал , обвал скель , падіння скель, камнепад , 

грязьовий потік , селеві потоки , обрушение, лавина, 산사태, 낙석, 암반사태, 진흙사태, 이류, 사태, 

눈사태, heyelan, toprak kayması, heyelanlar, toprak kaymaları, kaya düşmesi, kaya kayması, kaya göçmesi, 
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