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Summary 

Ensemble modeling is a general mathematical procedure to combine forecasts provided by differ-
ent models (or different parametrizations of the same model) in one single ensemble forecast. 
Ensemble modeling is named in different ways and approached through different philosophies. 
Here we summarize and discuss the main generic concepts including their shortcomings and raise 
open issues, such as the possibility to validate the ensemble forecasting model and the importance 
of keeping uncertainties of different nature separate to obtain a complete description of what we 
know and what we do not know. We introduce the principles of ontological ensemble (OE) model-
ing, which is rooted in a unified probabilistic framework. To create the OE forecast, the individual 
models are weighted to maximize the skill of the OE itself. But instead of collapsing the individual 
forecast distributions into a single ensemble distribution, the OE forecast maintains various kinds 
of uncertainties to acknowledge the ignorance of the “true” model. Based on theoretical concepts 
and a practical application to the operational earthquake forecasting system in Italy, we show how 
the OE modeling allows us to overcome some of the shortcomings of classical ensemble methods. 

1. Introduction 

Uncertainties of different kinds are pervasive in natural systems. Accounting for these uncertain-
ties implies that the evolution of such natural systems can be cast only in probabilistic terms. In 
this context, we use the term forecast to describe any probabilistic statement about the future 
occurrence of a natural threat (Jordan et al., 2011; see Gneiting and Katzfuss, 2014 for a full 
appraisal of the problem).  

In the most advanced real applications, scientists use a set of forecasting models that may be 
rooted in different kinds of modeling, ranging from entirely empirical models (e.g., see Gersten-
berger et al., 2021, for the case of seismic hazard) to deterministic models, which provide prob-
abilities when sampling the unavoidable uncertainty in the initial and/or boundary conditions (e.g., 
Murphy and Palmer, 1996; Folch et al., 2022); a single deterministic model can also generate 
different forecasts given the uncertainty over its parametrization (e.g., Senior Seismic Hazard 
Analysis Committee, NRC 2017). Loosely speaking, the i-th forecast is expected to describe the 
intrinsic variability of the process (aleatory variability), which may be described by a probabilistic 
survival function 𝑓௜ሺ𝑥ሻ ൌ 𝑃௜ሺ𝑋 ൐ 𝑥ሻ, where 𝑋 is the hazard intensity of interest in one specific spati-
otemporal window. Specifically, the function 𝑓ሺ𝑥ሻ provides the probability of exceedance (PoE) for 
each hazard intensity value x; it is often called the hazard curve and should not be confused with 
the hazard function commonly used to describe failure rate in survival analysis. 

The post-processing integration of all forecasts 𝑓௜ሺ𝑥ሻ is meant to include also the uncertainty re-
lated to the lack of knowledge of the “true” model (epistemic uncertainty), with the goal of im-
proving the forecasting skill (Palmer et al., 2004; Marzocchi et al., 2012; Krishnamurti et al., 
2000; 2016). This post-processing operation is often named differently, such as multimodel en-
semble or forecast (e.g., Khrishnamurti et al., 2000; Palmer et al., 2004; Tebaldi & Knutti, 2007) 
or superensemble (Khrishnamurti et al., 2016; Bottazzi et al., 2021). Here we use the general 
term ensemble modeling to describe any post-processing procedure that aims at providing a com-
plete description of the hazard forecast, including all known uncertainties. 

Ensemble modeling is currently approached through two different perspectives that we call point 
estimation and probabilistic (see Figure 1). In the point estimation perspective (Figure 1 bottom 
left), ensemble modeling is focused on getting the point forecast that is expected to be the closest 
to the real observation (e.g., Khrishnamurti et al., 2016). In the probabilistic perspective (Figure 
1 bottom center), all forecasts 𝑓௜ሺ𝑥ሻ of one variable of interest (i.e., the intensity of the hazard) 
are collapsed into one single ensemble probabilistic forecast 𝑓ሺ̅𝑥ሻ using different strategies 
(Gneiting and Ranjan, 2013). 
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Figure 1. Schematic illustration of different ensemble approaches. Top: Probabilistic forecasts of ten individual 
models in terms of hazard curves (left) and a slice at hazard level 𝑥଴. Bottom: Ensembles (red) of the individual 
forecasts using different ensemble approaches. The ontological ensemble modelling (OEM) presented in this deliv-
erable is shown on the right. For simplicity, the individual forecasts are weighted uniformly. Note that 𝑥 and 𝑓ሺ𝑥ሻ is 
shown on a logarithmic scale. 

Although the latter approach is widely used, it has some remarkable shortcomings and leaves 
open important questions that are worth being considered in detail. First, current methods of 
probabilistic ensemble modeling do not preserve the distinction between different kinds of uncer-
tainty. De facto, these methods integrate all uncertainties into one single probability distribution 
(Figure 1 bottom center). We argue that this approach does not provide a full picture of what we 
know and what we do not know to the decision makers. Remarkably, this need is recognized in 
many fields. For example, the most recent IPCC reports (IPCC, 2021) implicitly call for the need 
to have a more complete way to describe uncertainties of different kinds; in these reports, each 
model produces a likelihood (as the ensemble model 𝑓ሺ̅𝑥ሻ) characterized by an additional heuristic 
“high, medium, and low confidence” (which is not the statistical confidence) to communicate the 
reliability of the model.  

Figure 2 shows another example to illustrate the importance of keeping aleatory variability and 
epistemic uncertainty distinct for a complete information to the decision makers. It shows seismic 
hazard curves derived from different logic tree branches at two sites in the United States, in 
Memphis and on the San Andreas fault. In essence, if we just look at the mean hazard, 𝑓ሺ̅𝑥ሻ, as 
usually done in practice (the mean hazard could be seen as a sort of ensemble modeling among 
the different logic tree branches), the horizontal peak ground acceleration that has a PoE of 2% 
in 50 years is the same in Memphis (MEM) and in the San Andreas fault (SAF). However, the 
dispersion of all hazard curves 𝑓௜ሺ𝑥ሻ around the mean hazard is much larger in MEM than in SAF, 
which indicates a better constrained ensemble 𝑓̅ሺ𝑥ሻ in SAF as opposed to MEM. 
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Figure 2. Example of the seismic hazard in United States according to the model of 2008. Looking only at the mean 
hazard Memphis (MEM) and the San Andreas Fault (SAF) in California have the same PGA relative to the PoE of 2% 
in 50 years which is an important parameter to define the building code. However, if we look at the dispersion 
around the mean hazard we may notice that the dispersion of the curves in MEM is much larger than in SAF. [The 
figure has been produced by USGS]. 

Second, current probabilistic ensemble methods aim to represent the best model given the present 
knowledge, but do not allow to be validated. This aspect is of fundamental importance for both 
practical applications and science. Regarding practical applications, the reliability of models is 
fundamental for their societal use (Jordan et al., 2011; Palmer, 2018). Regarding the more general 
scientific enterprise, science is rooted in the concept that a model can be tested against observa-
tions and rejected when necessary. The difficulty (or impossibility) to validate forecasting models 
of natural hazards is that threatening events happen in open systems. For example, Oreskes et 
al. (1994) state “... it is impossible to demonstrate the truth of any proposition, except in a closed 
system”, and “Models can only be evaluated in relative terms, and their predictive value is always 
open to question. The primary value of models is heuristic”. This difficulty/impossibility of valida-
tion stands also at the root of a popular aphorism in statistics “all models are wrong” (Box, 1976), 
and so why waste time to validate them? We already know the answer. From a more technical 
point of view, Marzocchi and Jordan (2014, 2017) questioned that probabilistic models integrating 
all uncertainties in one single distribution cannot be meaningfully validated.  

Third, current ensemble models do not explain if the reliability (or confidence in the IPCC lan-
guage) of 𝑓ሺ̅𝑥ሻ is expected to improve when increasing the number of available models; this should 
be expected under the assumption that errors tend to cancel if the models are independent, and 
thus decrease uncertainty as the number of models increases. 

In this paper, we adopt a recently developed unified probabilistic framework (Marzocchi and Jor-
dan, 2014) to build an ensemble model of earthquake forecasts that addresses all three points 
discussed above. In particular, this new method, which we call ‘ontological ensemble modeling’ 
(OEM, see Figure 1 bottom right), embeds a univocal hierarchy of uncertainties (aleatory varia-
bility, epistemic uncertainty, and ontological error) that have to be kept separated and allows 
model validation. We show the practical importance of these features by applying the procedure 
to the operational earthquake forecasting system in Italy. 
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2. Principles of ontological ensemble modeling (OEM) 

Natural systems are pervaded by uncertainties of different kinds that are handled differently in 
different probabilistic frameworks. Marzocchi and Jordan (2014) introduced a unified probabilistic 
framework that is rooted in a univocal hierarchy of uncertainties.  The term ‘unified’ comes from 
the fact that the framework is based on the interplay between subjective (Bayesian) and fre-
quentist methods; it aligns well with the attitude of statistical unificationists (to our knowledge a 
first attempt in this direction is described by Rubin, 1984). In the unified framework discussed 
here, the probability is an unknown frequency treated as a random variable through the Bayesian 
mathematical apparatus.  

The cornerstone and starting point of the framework is the definition of an experimental concept, 
external to the probabilistic model, that identifies collections of data (observed and not yet ob-
served) judged to be stochastically exchangeable (i.e., with joint probability distributions invariant 
to data ordering) when conditioned on a set of explanatory variables (Draper et al. 1993). Prag-
matically, the experimental concept is somehow related to the usefulness of the model, since the 
exchangeable sequence 𝐞ே ൌ ሼ𝑒௡ :  𝑛 ൌ 1, 2, … ,𝑁ሽ represents what we want to describe with the 
model itself; at the same time, the definition of the experimental concept implicitly embeds the 
current state of knowledge about the process.  

De Finetti's representation theorem states that an infinite exchangeable sequence has an unknown 
frequency 𝜙෠, which can be interpreted as the aleatory variability of the experimental concept. This 
frequency is the target of a forecasting model, and the dispersion of the set of forecasts 𝜙௜ ൌ
𝑓௜ሺ𝑥଴ሻ ൌ 𝑃௜ሺ𝑋 ൐ 𝑥଴ሻ represents the epistemic uncertainty. In essence, given a set of forecasts 𝜙௜ we 
can build the extended experts’ distribution (EED), 𝑝ሺ𝜙ሻ. We can now define an ontological null 
hypothesis, which states that the aleatory representation of future occurrence of natural events—
the data generating process—mimics a sample from the probability distribution of aleatory repre-
sentations that describe the model’s epistemic uncertainty. In other words, it states that the “true” 
unknown frequency 𝜙෠  of the experimental concept is a sample of the EED, i.e., 𝜙෠ ~ 𝑝ሺ𝜙ሻ.  If the 
ontological null hypothesis of this relation is rejected, we found an ontological error, i.e., using 
the popular words of D. Rumsfeld, the existence of “unknown unknowns”. 

To summarize, the exchangeability judgment both on past data (needed to build the model) and 
future data (the object of forecasting; needed for model testing) implies that the future is sto-
chastically predictable from past experience—a leap of faith that adds content and utility to the 
ontological null hypothesis. The difficulty in making proper exchangeability judgments underlies 
some problems of experimental reproducibility in the social sciences. 

This probabilistic framework overcomes the drawback of the current ensemble modeling strategies 
that cannot be validated. For instance, in one of the most common applications (NRC 2017, 
Gneiting and Ranjani, 2011), all forecasts are collapsed into 𝑓ሺ̅𝑥ሻ which is the linear combination 
(weighted average) of 𝑓௜ሺ𝑥ሻ,  

 
𝑓ሺ̅𝑥ሻ  ൌ෍𝑓௜ሺ𝑥ሻ 𝜋௜

௠

௜ୀଵ

, ሺ1ሻ 

where 𝜋௜ is the weight of each forecast (discussed later on). It is worth noting that Eqn. 1 becomes 
the Bayesian model averaging (BMA) if we consider  𝜋௜ as the probability of 𝑓௜ሺ𝑥ሻ to be the true 
forecast, or more pragmatically the one that should be used (Scherbaum and Kahn, 2011).  

In this mathematical perspective, 𝑓ሺ̅𝑥ሻ is not related to any physical process, but it is defined as 
conditional distribution relative to a (sub) sigma-algebra or, more informally, conditioned on the 
available information set of the physical process. Hence, 𝑓̅ሺ𝑥ሻ is not expected to represent any 
distribution of data coming from a physical process, 𝑓መሺ𝑥ሻ, except when we have an infinite amount 
of information, the so-called "ideal" distribution for which 𝑓̅ሺ𝑥ሻ ൌ 𝑓መሺ𝑥ሻ (Gneiting and Katzfuss, 
2014). In practice, the comparison of the distribution 𝑓ሺ̅𝑥ሻ with real data is expected to lead to 
significant differences when 𝑓̅ሺ𝑥ሻ contains epistemic uncertainty (i.e., when it has been built with 
a limited amount of information) and when we have enough independent data to detect it.   
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Besides keeping uncertainties of different kinds separated and allowing model validation, this 
probabilistic framework also offers an answer to the third point mentioned in the introduction. 
Since it is impossible to have fully independent models because they are all built using the same 
amount of information to some extent, the forecasts are meant to sample the current epistemic 
uncertainty that cannot be reduced by simply increasing the number of models. For example, let 
us consider the case of earthquake forecasting; even if models are built independently from dif-
ferent modelers, they all rely on the same earthquake catalog and try to describe it at best. 
However, the number of earthquakes occurred in the time period covered by the catalog could be 
on the left tail of the true distribution, i.e., be particularly low. This means that the forecasts 
coming from all models will be very likely affected by a common-mode error (here, an overall 
underestimation) that is unknown. In the unified probabilistic framework, we need more inde-
pendent information, rather than more models, to reduce the epistemic uncertainty. 

 

3. OEM in practice; weighting the forecasts and building the en-
semble 

3.1 Building the ensemble forecast distribution 

The essence of the OEM is to move from the set of forecasts ሼ𝜙௜ ൌ 𝑓௜ሺ𝑥଴ሻ,𝜋௜ሽ to the ontological 
ensemble forecast 𝑝ሺ𝜙ሻ. Here we assume that 𝑝ሺ𝜙ሻ has a Beta distribution, which is particularly 
suitable to describe random variables in the range [0, 1]. Although the choice of any distribution 
becomes a possible source of ontological error, we argue that this is unavoidable; for instance, 
choosing a mean forecast 𝑓ሺ̅𝑥ሻ as made in the classical procedures is like assuming a Dirac distri-
bution for 𝑝ሺ𝜙ሻ, see Figure 1 bottom left and center.  

The parameters of the Beta distribution, α and β, are related to the weighted average 𝜙ത and 
weighted variance 𝜎థଶ of ሼ𝜙௜ ,𝜋௜ሽ through  

 𝛼 ൌ ቆ
𝜙ത ሺ1 െ 𝜙തሻ

𝜎థ
ଶ െ 1ቇ  𝜙ത ሺ2ሻ 

and 

 𝛽 ൌ ቆ
𝜙ത ሺ1 െ 𝜙തሻ

𝜎థ
ଶ െ 1ቇ  ሺ1 െ 𝜙തሻ. ሺ3ሻ 

The ontological null hypothesis distribution 𝑝ሺ𝜙ሻ is given by the distribution Betaሺ𝛼,𝛽ሻ, which rep-
resents where 𝜙෠ of the exchangeable sequence is expected to be (see Figure 1 bottom right). 

Here we briefly explain the importance of using a distribution instead of one single probability in 
the usual model calibration (Gneiting et al., 2007). Let’s take the calibration curve as an example, 
which is widely used to check heuristically the frequency of observations with their uncertainty as 
a function of the probability of the forecasts; in essence a calibration curve is the plot of the 
observed frequencies as a function of the associated forecasts. An implicit assumption of this 
analysis is that the forecasts represent the true expected frequency. In the unified probabilistic 
framework this means to use a Dirac distribution for 𝑝ሺ𝜙ሻ, which would mean that we do not have 
any epistemic uncertainty. Adding a horizontal bar to the points of the calibration curve could 
make this validation applicable also in the unified probabilistic framework. This issue will be ad-
dressed in future work devoted to the validation phase in the unified framework. 

In the following section we introduce the new weighting scheme considering the data coming from 
the OEF system in Italy (OEF-Italy; Marzocchi et al., 2014), which will be further explored in the 
next chapter for a full application of the ontological ensemble modeling.  
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3.2 Weighting the forecasts 

A fundamental step for OEM is to assign weights, 𝜋௜, to each forecast. The weights can be assigned 
depending on the problem at hand. For long-term forecasts, which are usually characterized by a 
few (if any) independent data for testing, weights are often assigned through qualitative experts’ 
elicitation schemes (e.g., Cooke, 1991; see also Meletti et al., 2021). When independent data for 
testing are sufficiently available (like, for example, in short-term earthquake forecasting and 
weather forecasting), weights can be assigned more quantitatively.  

As regards earthquake forecasting, Marzocchi et al. (2012) proposed a weighting procedure based 
on the scoring of each single model, i.e., the model that performs better receives a higher weight. 
Although the procedure sounds reasonable, Monteith et al. (2011) show that this is not the optimal 
procedure to weight the ensemble model. Following their suggestions, we weight the models to 
maximize the forecasting performance of the ensemble model, instead of weighting each model 
according to their individual performance.  

Determining the weights using multivariate logistic regression 

The goal is to find weights that maximize the skill of the ensemble, or in other words minimize 
the error between the ensemble forecast and the observation. Here we choose the logistic regres-
sion to fit the ensemble of forecasts to the observed data. This type of regression uses the logistic 
function (see Figure 3), here in particular its multivariate extension to incorporate more than one 
forecast, to model a binary observable: 

 𝑝ሺ𝝀ሻ ൌ  
1

1 ൅ 𝑒ି௚ሺ𝝀ሻ
      with 𝑔ሺ𝝀ሻ ൌ  𝛽଴ ൅ 𝛽ଵ ln 𝜆ଵ ൅ ⋯൅ 𝛽௠ ln 𝜆௠ , ሺ4ሻ 

in which 𝑝 is the output probability between 0 and 1, 𝛽଴ is the intercept, 𝛽ଵ,…,௠ the coefficients, and 
𝜆௜ the rates of the individual forecasts 𝑓௜ሺ𝑥଴ሻ in form of feature vectors at a specific hazard level 𝑥଴. 
The logistic regression has its name from being a linear combination on the logistic, or log-odds, 
scale ln ௣

ଵି௣
ൌ 𝑔ሺ𝝀ሻ, i.e., the logistic function converts log-odds to probability. Due to its binary form, 

the observable, 𝑦, needs to be discretized to 0 or 1 (e.g., inside each spatiotemporal bin, 𝑁 ൌ 0 or 
𝑁 ൒ 1 target events above a threshold magnitude 𝑥଴, see Figure 3). The above formulation sug-
gests that the logistic regression is limited to only provide ensemble forecasts for a single thresh-
old of the observable (e.g., hazard level 𝑥଴ሻ rather than a full probability distribution (Hamill et al. 
2008), e.g., a hazard curve. However, this limitation has been alleviated by Wilks (2009), who 
extended the logistic regression by including the threshold 𝑥 as an additional feature (and the 
corresponding forecast data for 𝑓௜ሺ𝑥ሻ). In section 4, we will however not demonstrate this extension 
and instead remain at a specific hazard level for the sake of illustrating the principles of OEM. 

 

Figure 3. Example fit of the logistic function (gray curve) to one forecast model component (ETAS_LM) using one year 
of data. The observable (here: earthquakes with M ≥ 4) is binned in spatiotemporal bins and becomes y = 1 if one or 
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more target events occur within it. For illustration purposes, the displayed data points are randomly jittered vertically 
(to not collapse them all on either 0 or 1) and shown with a transparency effect (to highlight denser parts).  

 

The best fit to the observable, i.e., the 𝛽଴ and 𝛽ଵ,…,௠ that maximize the skill of the ensemble, is 
obtained by maximizing the log-likelihood ℓ, the measure for the goodness of fit of the logistic 
regression: 

 ℓ ൌ  ෍ lnሺ𝑝௝ሻ
௜:௬ೕୀଵ

൅ ෍ ln൫1 െ  𝑝௝൯ ൌ  ෍ൣ𝑦௝ lnሺ𝑝௝ሻ൅ሺ1 െ 𝑦௝ሻ ln൫1 െ 𝑝௝൯൧
௝௜:௬ೕୀ଴

, ሺ5ሻ 

in which 𝑦௝ is the discretized observable and 𝑝௝ the probability estimates in a particular spatiotem-
poral bin 𝑗. 

To reduce the computational demand of fitting the logistic model (totaling 56 million samples, of 
which 99.996% are non-target bins), we only use 10% of the non-target bins (while keeping all 
target bins). This modification changes the prevalence of target bins and causes a bias in the 
estimated 𝛽෨଴ (King & Zeng, 2001), which can be corrected by subtracting 𝛽଴bias ൌ െ ln 0.1 to obtain 
𝛽଴; the increased uncertainty in 𝛽ଵ,…,௠ due to fewer data is negligible. 

One may argue that the logistic fit itself represents already the ensemble model, as it translates 
the individual forecasts into a probabilistic output. In fact, the logistic regression is typically used 
in probabilistic forecasting because the output is a probability rather than a discrete quantity, for 
instance in meteorology (Wilks 2009). However, unlike weather forecasting, we have to deal with 
the situation that the observable (here: spatiotemporal bins where moderate or large earthquakes 
occur) are very rare (~0.004%, without downsampling non-target bins). This low fraction has 
major implications for obtaining a reliable fit to the data (Hamill et al. 2008) and limits the cali-
bration of the forecast models in the ensemble. However, we can use the logistic regression to 
assess the relative performance of the models, and use this information to build the ensemble. In 
this case, we have to account for the forecasting horizon 𝑡fh ൐  0 days to avoid data leakage when 
fitting the ensemble: because the forecasts at time 𝑡௡ refer to the future, we can only use forecast 
data up to 𝑡௡ െ 𝑡fh (i.e., the ensemble can only be assessed after 𝑡fh has passed)—although we can 
incorporate the observable up to 𝑡௡. In other words, the training data is validated ‘out-of-sample’ 
to assure their independence from data that will be observed only in the future. Because our target 
events are so rare, the logistic fit strongly depends on them, in particular how much the distribu-
tion of ln 𝜆௜ in target bins (𝑦 ൌ 1) differs from the one in non-target bins (𝑦 ൌ 0). As a consequence, 
the delay due to 𝑡fh leads to a reduced utility of the fitted logistic model to represent a calibrated 
ensemble at 𝑡௡, i.e., it may perform well retrospectively at 𝑡௡ െ 𝑡fh (provided ln 𝜆௜ ሺ𝑦 ൌ 0ሻ and 
ln 𝜆௜ ሺ𝑦 ൌ 1ሻ are well-separated), but not prospectively at 𝑡௡; the fit may not be exactly applicable 
anymore once the individual forecast models adjusted the forecast rate due to new events (espe-
cially after a mainshock, which considerably changes the mapping between ln 𝜆௜ and 𝑦). This misfit 
due to the delay strongly affects 𝛽଴, but also 𝛽ଵ,…,௠ (i.e., the model importance weights) may not 
be exactly appropriate anymore at 𝑡௡. 

To avoid the strong dependence on 𝛽଴, we take a different approach: we only make use of the 
fitted 𝛽ଵ,…,௠ and use them to build a weighted average of 𝜆௜. Since the coefficients can be negative, 
we map them to pseudo-weights as follows: 

𝑤௜ ൌ ൜ 𝑒
ఉ೔ െ 1,      for 𝛽௜ ൐ 0

0,                   otherwise
   with 𝑖 ൌ 1, … ,𝑚;  ሺ6ሻ 

in this way, a forecast attributed with a 𝛽௜ ൑ 0 by the logistic regression receives zero weight. 
Choosing an exponential relationship is related to the fact that 𝑒ఉ೔ represent the odds ratio of the 
i-th model, i.e., that the odds multiply by this value for every 1-unit increase in ln 𝜆௜. Note that 
the sum of pseudo-weights does not necessarily equal 1.0 (hence ‘pseudo’), and they need to be 
normalized: 

𝜋௜ ൌ
𝑤௜

∑ 𝑤௝௠
௝

, ሺ7ሻ 

so that the weighted-average ensemble 𝑓ሺ̅𝝀ሻ can be calculated with Eqn. 1.  
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4. OEM applied to operational earthquake forecasting 

Operational Earthquake Forecasting (OEF) comprises procedures for gathering and disseminating 
authoritative information about the time dependence of seismic hazards to help communities pre-
pare for potentially destructive earthquakes (Jordan et al., 2011). Seismologists are not able to 
predict large earthquakes with high probability in small spatiotemporal windows, but they are able 
to model the spatiotemporal clustering, which is the most striking deviation of the earthquake 
occurrence process from complete randomness. Such clustering is particularly pronounced in time 
windows of days to weeks, but it may be still relevant for up to one decade or more (depending 
on the mainshock magnitude and fault loading rate, see Stein & Liu, 2009).  

Here we consider the OEF system in Italy (OEF-Italy) which consists of a combination of three 
models through an ensemble approach. The ensemble is produced using Score Model Averaging 
(SMA), in which the weight of each model is proportional to the inverse of the logarithmic score 
of the same model that is calculated from prospective testing. A full description of the SMA en-
semble and the individual models can be found in Marzocchi et al. (2014) and references therein. 
Since April 2005, these models provide weekly forecast rates for earthquakes with M ≥  3.95 in the 
testing region of the corresponding CSEP (Collaboratory for the Study of Earthquake Predictability) 
experiment (see orange area in Figure 4). To date the consistency of the OEF-Italy system has 
been tested prospectively during the 2012 Emilia earthquake sequence and more recently for the 
2016 central Italy sequence (Marzocchi et al., 2017). However, the adequacy of the ensemble 
modeling strategy has never been tested. In this section, we aim to find if a novel weighting 
scheme can improve the forecasting performance of OEF-Italy, and to describe how we can vali-
date the OEF system. 

 

Figure 4. Map of the OEF system in Italy. Each model provides a rate forecast for each bin in the CSEP (Collaboratory 
for the Study of Earthquake Predictability) testing region of the Italian experiment (orange). M ≥ 3.95 events be-
tween April 2005 and May 2020 are indicated by filled circles; only those inside the testing region are considered 
(as target events). 
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4.1 Building a new ensemble based on logistic regression 

At each date (00:00 UTC) between April 2005 and May 2020, we fit the multivariate logistic model 
between the forecast rates of the individual models and the observation in the spatiotemporal bins 
(i.e., target earthquakes binned to the testing region’s grid resulting in ‘0’ [no targets] or ‘1’ [one 
or more targets]) within the corresponding forecast period. To obtain model weights, we examined 
various temporal fitting schemes such as using all data since the beginning (Figure 5), or only 
data of the previous year (Figure 6). The first scheme lets the model weights 𝜋௜ converge over 
time, whereas the latter scheme lets 𝜋௜ reflect only the recent performance of the individual mod-
els. In both cases, the most notable weight change occurs during the L’Aquila sequence in April 
2009. The other significant sequences in the recent past, i.e., Emilia in May 2012, and Central 
Italy in August—November 2016 cause only minor weight changes in the first scheme, likely be-
cause their relative contribution to the increasing amount of used data decreases over time. In 
the latter scheme, instead, these two sequences do not seem to play a role in readjusting the 
ensemble, or at least only for a brief period in time. Because the tends to “forget” model perfor-
mance after one year, it provides some insights into the best performing model at a certain time. 
Accordingly, the ETAS_LM model appears to perform best during the L’Aquila and Central Italy 
sequences, but not during Emilia, in which ETES_FMC appears to perform best. STEP_LG generally 
appears to play a minor role. 

Many more fitting schemes are imaginable, e.g., using exponentially decaying temporal window 
to pronounce the recent performance, or incorporating the spatial skill to account for the regionally 
varying seismicity and model performance.   
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Figure 5. Applying the logistic regression over time using increasingly more data. Top: Logistic regression intercept 
𝛽଴ after correcting for the bias due to downsampling, and coefficients 𝛽ଵ,ଶ,ଷ for the three models; Middle: Regression 
coefficients mapped to pseudo-weights 𝑤௜; Bottom: Normalized weights 𝜋௜. 

 

Figure 6. Like Figure 5, but applying the logistic regression only to data of the previous 365 days. 

 

4.2 Assessing the performance 

To evaluate the forecast performance quantitatively, we calculate the information gain (IG) per 
event (Rhoades et al. 2011) relative to the SMA ensemble as the reference model (): 

𝐼஺,ௌெ஺ ൌ
1
𝑁
෍൫log൫λ௝ೖ

஺ ൯ െ log൫λ௝ೖ
ௌெ஺൯൯

ே

௞ୀଵ

െ
 𝑁෡஺ െ  𝑁෡ௌெ஺

𝑁
, ሺ8ሻ 

in which model ‘A’ is synonymous for all the models for which we want to determine the (relative) 
performance, i.e., the logistic model 𝑝ሺ𝝀ሻ itself, the weighted-average ensemble 𝑓ሺ̅𝝀ሻ based on the 
logistic fit, and each candidate model (ETAS_LM, ETES_FMC, and STEP_LG); 𝜆௝ೖ is the forecast 
rate of any model in every bin j in which target event k occurs; 𝑁෡ ൌ ∑ λ௝௝  the total number of 
expected earthquakes of any model; and 𝑁 the number of target events. As with model fitting, 
we only use forecasts issued on 00:00 UTC and skip all irregular forecast times. 
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Figure 7. Information gain per event of each new ensemble and candidate model over the SMA ensemble using the 
first fitting scheme (increasingly more data, Figure 5). At the bottom, the daily rate of target events is displayed by 
vertical bars. 

 

 

Figure 8. Like Figure 7, but using the second fitting scheme (only data of the last 365 days, Figure 6). 

 

Table 1. Cumulative information gains of each model over the SMA ensemble for the two different temporal fitting 
schemes (see text), i.e., the sum of each curve shown in Figures 7 and 8, respectively. 

Model Individual Fitting scheme #1 Fitting scheme #2 

ETAS_LM -132.3   

ETES_FMC -1293.6   

STEP_LG -3563.9   

Logistic ensemble (weights)  364.9 580.4 

Logistic ensemble (model)  -1443.1 -1124.9 
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Figures 7 and 8 as well as Table 1 show the overall superior performance of the ensemble that 
uses the weights of the logistic fit, independently of the fitting scheme. The logistic model ensem-
ble performs worse than simply using its coefficients as weights, although it performs better than 
STEP_LG and slightly better than ETES_FMC in the second fitting scheme. This misfit is likely 
caused by the problematics mentioned in section 3 (too few target bins), which led us to build the 
weight-based average in the first place. Figures 7 and 8 confirm what could be already inferred 
from the ensemble weights (Figures 5 and 6): ETAS_LM performs best during the 2009 L’Aquila 
and 2016 Central Italy sequence. The SMA ensemble apparently does not capture these sudden 
improvements in ETAS_LM’s IG, likely because the badly performing STEP_LG model cancels those 
benefits. Our new weight-based ensemble does a better job at combining the models to obtain a 
well-performing ensemble, especially for the second fitting scheme (Figure 8), where our ensem-
ble provides an even higher IG than any other model—at almost all times. In the following years 
after L’Aquila, STEP_LG and ETES_FMC slightly improve in IG, while the ETAS_LM slightly de-
grades. Our weight-based ensemble is able to capture this behavior, barely decreasing in IG. 
During the 2012 Emilia sequence, however, the ensemble dropped in IG, likely because it placed 
too much weight on STEP_LG (see Figure 6) due to its good performance during quiescent periods. 
Apparently, it was not the appropriate model to favor during the onset of this sequence; it will 
take the ensemble a week to adjust due to the delay caused by the forecasting horizon. In the 
following years, the IG slightly degrades, albeit less than ETAS_LM’s IG. During the 2016 Central 
Italy sequence, ETAS_LM gains IG, which our weight-based ensemble, however, cannot fully ex-
ploit because it was briefly weighting all three models to an about equal amount. Overall, the 
second fitting scheme leads to a higher cumulative IG than the first, making this 365-day fitting 
scheme our preferred choice. Although the SMA is the second-best model, the IG of our weight-
based ensemble is several times higher than the difference between SMA and ETAS_LM. This 
margin illustrates the advantage of sound ensemble modelling: exploiting the strength of each 
individual model to provide a significantly better model, even though ETES_FMC and STEP_LG are 
rarely more informative than ETAS_LM. 

4.3 Building the ontological ensemble (OE) forecast distribution 

Finally, we use our weight-based ensemble for the second fitting scheme to model an ontological 
ensemble (OE) forecast distribution at each date using: (i) the individual forecasts 𝜙௜ ൌ 𝑓௜ሺ𝑥଴ሻ ൌ
𝑃௜ሺ𝑋 ൐ 𝑥଴ሻ for the hazard level 𝑥଴ (here: M4); (ii) the ensemble mean forecast 𝜙ത ൌ 𝑓పഥሺ𝑥଴ሻ, (ii) the 
model weights 𝜋௜; and the beta distribution Beta(α,β), which describes pሺ𝜙ሻ within the range [0, 
1]. We provide the OE forecast at three spatial locations over time: the spatial bins in which the 
mainshocks of the 2009 L’Aquila sequence (Figure 9), 2012 Emilia sequence (Figure 10), and 2016 
Central Italy sequence (Figure 11, Norcia) occurred. 

  

Figure 9. Ontological ensemble (OE) forecast for the spatial bin where the 2009 L’Aquila mainshock occurred. The 
forecast rate of the various models is indicated by the curves (see legend): each candidate model (colored curve), 



RISE – Real-Time Earthquake Risk Reduction for a Resilient Europe 

 

28.2.2022 15 

our weighted-average ensemble (black curve), 95% prediction interval (PI) of the OE forecast (gray shaded band). 
The temporal evolution of the individual model weights in the ensemble is indicated by an opacity/transparency 
effect of the candidate forecast curves. The vertical red shaded band represents a time period in which a single 
model has all the weight (see text). At the bottom, the daily rate of target events within 50 km is displayed by 
vertical bars. 

  

Figure 10. Like Figure 9, but for the spatial bin where the mainshock of the 2012 Emilia sequence occurred. 

 

  

Figure 11. Like Figures 9 and 10, but for the spatial bin where the mainshock of the 2016 Central Italy sequence 
occurred (Norcia). 

Note that when the ensemble fit prefers only a single model at a certain date (i.e., with 100% 
weight, shaded in red in Figures 9–11), the variance cannot be determined in our case (because 
our models do not provide a probability distribution by themselves), thus the ensemble forecast 
distribution becoming a Dirac distribution again. As a best guess for the variance at such a date, 

we determine the average relative variance, 
ఙഝ
మ

థഥ
, over all prior forecast dates (to remain causal), 

and multiply it with 𝜙ത. 

In Figures 9–11, one can nicely see how 𝜙ത fluctuates between 𝜙௜ of individual models, and occa-
sionally tracks the rate of single models if they have the major weight, e.g., ETAS_LM during the 
L’Aquila and Central Italy sequences, and ETES_FMC in the period of 2011–2013. It also becomes 
apparent that ETAS_LM provides the highest rate forecasts, and STEP_LG the lowest. This may 



RISE – Real-Time Earthquake Risk Reduction for a Resilient Europe 

 

28.2.2022 16 

explain why ETAS_LM performs best during sequences, but not during times of quiescence, in 
which ETES_FMC typically receives most of the weight and gets tracked by the OE forecast (e.g., 
see 2011-2013 in L'Aquila or Central Italy).  

But the novelty is that we now also model the uncertainty of the forecast, that is, given 𝜋௜ and the 
dispersion of 𝜙௜, we quantify the reliability of the ensemble. To illustrate this distribution from 
another perspective, Figure 12 provides slices of the OE forecast and the contributing forecasts at 
various times around the 2016 Central Italy sequence. For instance, before the sequence started, 
with a 95% reliability, the probability for a M ≥ 4 was in the range of 0.02–0.1% per week; one 
week after the Mw6.0 Amatrice event, this probability was in the range of 2%–11% per week; 
before the Norcia event 8%–45% per week; and one day later 23%–77% per week. 

 

 

Figure 12. OE forecast distributions (dashed curves) corresponding to Figure 11 at various times during the Central 
Italy sequence. The forecasts of individual models are shown as bars at the appropriate forecast probability with 
their heights corresponding to the assigned weights 𝝅𝒊. The 95% prediction intervals (vertical dotted lines) are 
annotated with their corresponding probabilities. 
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5. Conclusions 

The aim of this work is to put forward a novel procedure that we call ontological ensemble mod-
eling (OEM) to combine forecasts coming from different models. After having introduced the main 
theoretical background, which is rooted in a unified probabilistic framework recently introduced in 
the field of natural hazards, we apply OEM to the real case of operational earthquake forecasting 
in Italy to show how the method can be applied in real cases.  

Here we summarize the main features and findings: 

 OEM uses a univocal hierarchy of uncertainties keeping them separated; this allows scien-
tists to validate a probabilistic model.  

 The separation of the different kinds of uncertainty completely describes the ensemble 
forecast, highlighting clearly what we know and what we do not know about the future 
evolution of the process.  

 The method clarifies that by increasing the number of models/forecasts, the epistemic 
uncertainty cannot be reduced because it can only be reduced by introducing new infor-
mation. In other words, the models, even if they have been built independently, can never 
be fully independent because they all rely on the same information to some extent. Tech-
nically speaking, the lack of complete independence does not allow canceling out epistemic 
uncertainty by increasing the number of models, that can only sample more finely the 
epistemic uncertainty. This calls for creating and incorporating more diverse models into 
the ensemble, e.g., physics-based forecast models. 

 The application to OEF-Italy demonstrates the benefits of OEM in two different ways: it 
provides a superior ensemble model than the current SMA ensemble, and it represents the 
reliability of the ensemble forecast by providing a probability distribution. A sound ensem-
ble like our weighted-average based on the logistic fit is less likely to fail dramatically than 
a single model or a simple average of all candidate models. Moreover, we can modify the 
fitting scheme of the ensemble to address the multipurpose & authoritative character of 
OEF for an end user (i.e., with a focus on recent seismicity, overall rate, spatial skill, etc.). 
The additional quantification of the ensemble forecast’s reliability allows scientists a more 
honest and versatile communication of forecast probabilities. 
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