

Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

High Performance Computing Based Assessment of Hydraulic Stimulation

Nestola Maria, Karvounis Dimitrios, Patrick Zulian, Krause Rolf

Presented by Maria Nestola

Motivations

Institute of Computational Science ICS

An enhanced geothermal system (EGS) generates geothermal electricity without the need for natural convective hydrothermal resources.

EGS technologies **enhance** and/or create **geothermal resources** in hot dry rock (HDR) through *hydraulic stimulations*.

Motivations

Enhance permeability by pumping water down an injection well.

Water injection → **shear events.**

Lack of adequate modelling tools.

Long term performance is poorly understood.

Hydraulic stimulation can result in uncontrolled induced seismicity.

EGS Mathematical Model

Main ingredients:

- 1. Background matrix
- 2. Well injection
- 3. Fracture Network
- 4. Fracture triggering

D.C.P. Peacock et al. / Journal of Structural Geology 92 (2016) 12-29

della

EGS Mathematical Model

Università della Svizzera italiana

Institute of Computational Science ICS

Background matrix and well injection

Permeability

 $s_b \frac{\partial p}{\partial t} = \nabla \cdot \left(\frac{K_b}{\mu_b} \nabla p \right) + q_{ib} + w \quad \text{in } \Omega \times (T_i, T_{\text{fin}})$

Storativity

Viscosity

w accounts for the well modelled as a cylinder penetrating the background matrix.

Permeability can be a function of pressure.

 q_{bi} is the **coupling term** between background matrix and fractures.

EGS Mathematical Model

Università della Svizzera italiana

Institute of Computational Science ICS

Fracture Network

 $s_{f} \frac{\partial p_{i}}{\partial t} = \nabla \cdot \left(\frac{K_{f}}{\mu_{f}} \nabla p_{i}\right) + q_{ib} + q_{ij} \quad \text{in } \Omega_{i} \times (T_{i}, T_{\text{fin}})$

Storativity

Viscosity

Permeability

 q_{ib} is the **coupling term** between background matrix and fractures.

 q_{ii} is the **coupling term** among fractures.

Fractures are represented as disks with hypocenter x_i , and radius r_i .

Fracture triggering & Upscaling model

Stochastic seeds are generated:

- 1. **Geometry** (hypocenter x_i , inclination, radius r_i of the disk)
- 2. Material properties (compressive stress vectors, σ_1 , σ_2 , σ_3 , cohesion coefficient $C(x_i)$, friction coefficient $\mu(x_i)$, earthquake magnitude $M(x_i)$)

Università

della

Svizzera

italiana

Institute of

Science

ICS

ETH zürich 7

Computational

For each seed normal $\sigma_n(x_i)$ and shear stresses $\tau(x_i)$ are computed.

Maria Nestola

Fracture triggering & Upscaling model

Mohr-Coulomb failure criterion:

$$lf(p(x_i) > P_f(x_i))$$

an earthquake is triggered with magnitude

$$m_r(x_i) = f_{rand}(s_i),$$

If $(m_r(x_i) > M(x_i))$ a new fracture is added to the original network

Maria Nestola

Università Institute of Computational Science ICS

della Svizzera italiana

Fracture triggering & Upscaling model

Università della Svizzera italiana Institute of Computational Science ICS

Mohr-Coulomb failure criterion

$$lf(p(x_i) > P_f(x_i))$$

an earthquake **is triggered** with **magnitude**

$$m_r(x_i) = f_{rand}(s_i),$$

If
$$(m_r(x_i) < M(x_i))$$

fractures are upscaled

$$K_b = K_b + \Delta K_b$$

Hydraulic FR-Simulations

Institute of Computational Science ICS

Material Properties:

$$\mu_b = \mu_f = 1.0e^{-3}$$
 [Pa s]

$$s_b = 7.2e^{-11}$$

$$s_f = 1.8e^{-10}$$

$$K_b = 2.0e^{-17} \,[\mathrm{m}^2]$$

Matrix & Well:

 $1300 \times 1000 \times 1500 \text{ [m]}$ $x_s = [31, -33, -4632]$ $x_f = [0, 0, -5000]$ r = 0.12 [m] $P_{w0} = 3176133 \text{ [Pa]}$

Maria Nestola

ETH zürich 10

Hydraulic FR-Simulations

Università della Svizzera italiana Institute of

Science ICS

Computational

Maria Nestola

ETH zürich 11

Institute of

Science

ICS

Computational

High uncertainty regarding the in-situ conditions.

High uncertainty regarding the material properties.

Monte Carlo (MC) simulations: allow for **probabilistic forecasts** for all possible in situ conditions and complicated scenarios.

MC simulations useful for estimating **expectations** arising from stochastic simulations

Institute of

Science ICS

Computational

High uncertainty regarding the in-situ conditions.

High uncertainty regarding the material properties.

Monte Carlo (MC) simulations: allow for **probabilistic forecasts** for all possible in situ conditions and complicated scenarios.

MC simulations useful for estimating **expectations** arising from stochastic simulations

Standard MC

- 1. Draw N samples ω_n of the uncertain parameters.
- 2. Run N simulations and compute $P(\omega_n)$ for each solution.

$$\mathbb{E}[P] = \frac{1}{N} \sum_{n=1}^{N} P(\omega_n)$$

Probabilistic forecast: MC

Università Institute of della Computational Svizzera Science italiana ICS

10 15 20 25 30 35 0 10 15 20 25 30 35 0 10 15 20 25 30 35 0 10 15 20 25 30 35 5550 5time [days] time [days] time [days] time [days]

MC simulation	Mean seismicity	Difference from	Furthest Hypocenter
(250 samples)	$(M_w \ge 0.8)$	Reference	
Reference set of parameters	905	-	$273 \ m$
1/4 less fractures's density	1132	+25%	312 m
$\times 2$ specific storativity (fractures)	536	-40.8%	179.1 m
$\times 10$ specific storativity (fractures)	71	-92.1%	$64.7 \ m$
1/2 specific storativity (fractures)	2126	+134%	403 m
$\times 2$ permeability of fractures	863	-6.0%	277m
$\times 2$ initial permeability	530	-41.4%	218.1 m
$\times 4$ initial aperture	827	-8.7%	258 m
$\times 2$ post-shearing aperture	1201	+32.7%	$312 \ m$
×2 stress drop	1156	+27.7%	256 m

Dimitrios Karvounis, Schatzalp Workshop on Induced Seismicity, 5-8 March 2019, Davos, Switzerland

Maria Nestola

N = 250

ETH zürich 14

Standard MC

- 1. Draw N samples ω_n of the uncertain parameters.
- 2. Run *N* simulations and compute $P(\omega_n)$ for each solution.
- 3. *N* needs to be $O(1/\epsilon^2) \longrightarrow$ expensive.

Multilevel MC

There is a sequence of approximations, $P_0, \ldots, P_{l-1}, P_l$, with increasing accuracy and computational cost.

$$\mathbf{E}[P_L] = \mathbf{E}[P_0] + \sum_{l=1}^{N_l} \mathbf{E}[P_l - P_{l-1}],$$

with N_l being the number of samples on each level.

Maria Nestola

Università

della

Svizzera italiana Institute of

Science

ICS

Computational

Multilevel MC

There is a sequence of approximations, $P_0, \ldots, P_{l-1}, P_l$, with increasing accuracy and computational cost.

$$\mathbf{E}[P_L] = \mathbf{E}[P_0] + \sum_{l=1}^{N_l} \mathbf{E}[P_l - P_{l-1}],$$

with N_1 being the number of samples on each level.

The **MLMC** method **works** if:

$$\mathbb{V}[P_l - P_{l-1}] \to 0 \text{ as } l \to \infty,$$

for the same underlying stochastic samples ω_n .

High correlation
$$\rho_{l,l-1} = \frac{\text{Cov}(P_l, P_{l-1})}{\mathbb{V}(P_l)\mathbb{V}(P_{l-1})}$$
!

Maria Nestola

della

italiana

Probabilistic forecast: MLMC

3 levels:

Level 1: $\Delta x = 40$

Level 2:
$$\Delta x = 20$$

Level 3: $\Delta x = 10$

$$\Delta t \sim \frac{\Delta x^2}{D}$$

with

$$D = \frac{K_b}{\phi_b \mu_b}$$

Università della Svizzera italiana

Institute of

Science

ICS

Computational

Probabilistic forecast: MLMC

Institute of Computational Science ICS

3 levels:

Level 1:
$$\Delta x = 40$$

Level 2:
$$\Delta x = 20$$

Level 3: $\Delta x = 10$

$$\Delta t \sim \frac{\Delta x^2}{D}$$

with

$$D = \frac{K_b}{\phi_b \mu_b}$$

Correlation

$$\rho_{l,l-1} = \frac{\operatorname{Cov}(P_l, P_{l-1})}{\mathbb{V}(P_l)\mathbb{V}(P_{l-1})}$$

 $\rho_{12} = 0.75$

 $\rho_{13} = 0.72$

$$\rho_{23} = 0.77$$

Probabilistic forecast: MLMC

Institute of Computational Science ICS

3 levels:

Level 1:
$$\Delta x = 40$$

Level 2:
$$\Delta x = 20$$

Level 3: $\Delta x = 10$

$$\Delta t \sim \frac{\Delta x^2}{D}$$

with

$$D = \frac{K_b}{\phi_b \mu_b}$$

Correlation

$$\rho_{l,l-1} = \frac{\operatorname{Cov}(P_l, P_{l-1})}{\mathbb{V}(P_l)\mathbb{V}(P_{l-1})}$$

$$\rho_{12} = 0.75$$

$$\rho_{13} = 0.72$$

$$\rho_{23} = 0.77$$

Discontinuities in the parameters!

Abrupt changes induced by earthquakes!

HM simulations may be used to

- forecast seismicity and reservoirs performance,
- highlight the limitations of the modelled processes.

MC Simulations — high uncertainty of the parameters and in-situ conditions.

Future work: MultiLevel MonteCarlo methods.

Software Libraries

Università della Svizzera italiana Institute of Computational Science ICS

Computational Science ICS

- Karvounis, PhD Thesis, ETH, 2013, https://doi.org/10.3929/ethza-009967366
- Karvounis, Wiemer, Decision Making Software for Forecasting Induced Seismicity and Thermal Energy
- Giles, Michael B. "Multilevel monte carlo path simulation." *Operations Research* 56.3 (2008): 607-617.

Thank you for your attention

Workflow

Università della **Institute of** Computational Svizzera italiana **Institute of Computational Science ICS**

To summarise

Dimitrios Karvounis

Scalability

Maria Nestola