NIL | Université de Lausanne Institut des sciences de la Terre

	Università della Svizzera italiana

Institute of Computational Science ICS

Hydromechanical Coupling in Heterogeneous and Fractured Media

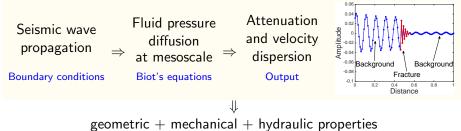
Task 3.2: Computational Energy Innovation

Marco Favino¹, Jürg Hunziker¹, Rolf Krause², Klaus Holliger¹

¹Institute of Earth Sciences, University of Lausanne ²Institute of Computational Science, Università della Svizzera italiana

Lausanne, September 3-4, 2019

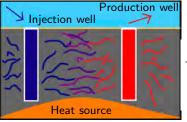
Fluid-saturated fractured porous rocks



of fracture networks in rock formations

Applications

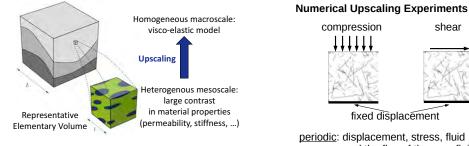
- geothermal energy production
- hydrocarbon exploration
- nuclear waste storage
- CO_2 sequestration



Fractures as fluid pathways

Hydro-mechanical coupled models

shear



Adapted from Jänicke et al. (2015)

periodic: displacement, stress, fluid pressure and the flux of the pore fluid

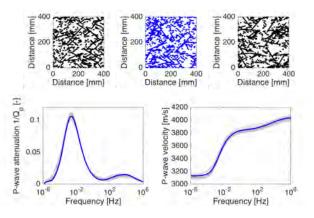
At the mesoscale (Rubino et al., 2011):

- perform time-harmonic oscillatory tests,
- for each frequency ω , compute attenuation and velocity dispersion Y_{ω} ,
- use these obtained values to compute material properties for the macroscale problem.

Fracture distribution in a Representative Elementary Volume

- deterministic information not available or insufficient $\pmb{\mathsf{X}}$
- statistical properties \checkmark

Monte Carlo method: *N* samples to estimate $\mathbb{E}(Y_{\omega})$



2D stochastic simulations in Hunziker, Favino et al., *J. Geophys. Res.* (2018)

> Monte Carlo approximation $\frac{1}{N}\sum_{n=1}^{N}Y_{\omega}^{n}$

Finite element discretization

Discretized Biot's equations

Biot's equations elasticity coupling $\begin{cases} -\nabla \cdot (\boldsymbol{\sigma}_{E}(\mathbf{u}) - \alpha p \mathbf{l}) = 0\\ i\alpha \nabla \cdot \mathbf{u} + i\frac{p}{M} - \frac{1}{\omega} \nabla \cdot \left(\frac{k}{n} \nabla p\right) = 0 \end{cases}$ $\begin{vmatrix} A & -B^T \\ -iB & -iM - \frac{1}{\omega}C \end{vmatrix} \begin{vmatrix} \mathbf{u} \\ \mathbf{p} \end{vmatrix} = \begin{vmatrix} \mathbf{f} \\ \mathbf{g} \end{vmatrix}$ diffusion coupling Root mean square error (RMSE) $\mathsf{RMSE} \leq (Ch^w) + (DN^{-1/2}),$ $D^2 \approx Var(Y_{\omega})$ Discretization error Statistical error \Rightarrow many expensive simulations on fine meshes Meshing is one of the bottlenecks of the problem Xelements follow the geometry a) hands-on

- time consuming
- may fail

Marco Favino

Hydromechanical Coupling in Fractured Media

Adaptive mesh refinement for fracture networks

Hierarchy of adapted meshes

Initial mesh (uniform)

Meshes

- do not have to resolve fractures
- can be "adapted" to any fracture distribution

.

- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- 8 refine selected elements

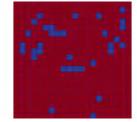
Hierarchy of adapted meshes

Initial mesh (uniform)

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements

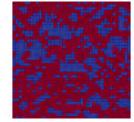
Hierarchy of adapted meshes



1 refinement step

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

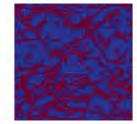
- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



2 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

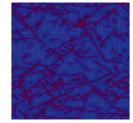
- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



3 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

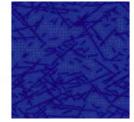
- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



4 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

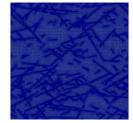
- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



5 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

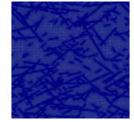
- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



6 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- **8** refine selected elements



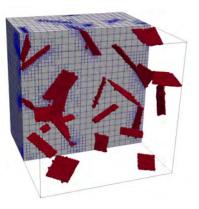
7 refinement steps

- Elements do not follow the geometry but refined close to the interfaces
- More elements where error is larger

Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can apply an AMR algorithm:

- select elements that have a non-emply overlap with at least one fracture
- elect neighbor elements such that the mesh is 1-irregular
- 8 refine selected elements



Finite element method with discontinuous material properties

Unil Institut des sciences de la Terre

- Elements do not follow the interface between fractures and background
- Material properties may be discontinuous over some elements
- Properties are assigned per quadrature point at assembly time

$$C_{ij} = \int_{T_h} \frac{k}{\eta} \nabla \phi_j \cdot \nabla \phi_i \, d\mathbf{x} = \sum_{qp} w_{qp} \frac{k(\mathbf{x}_{qp})}{\eta(\mathbf{x}_{qp})} \nabla \phi_j(\mathbf{x}_{qp}) \cdot \nabla \phi_i(\mathbf{x}_{qp})$$

• Reduced convergence rate (Babuška, 1970)

$$||u - u_h||_{H^1} \le Ch^{1/2}$$

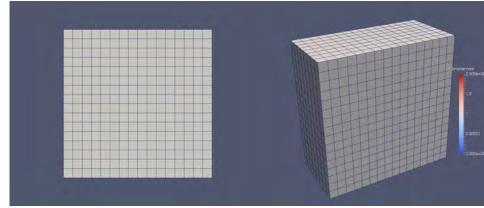
Larger number of elements at the interfaces

Algorithm implemented in the FE framework MOOSE

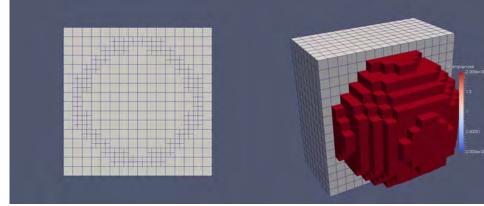
- Developed a new app **Parrot**
- Extended MOOSE to work with complex-type variables
- AMR already available

Algorithm validated in Favino et al. (2019, submitted)

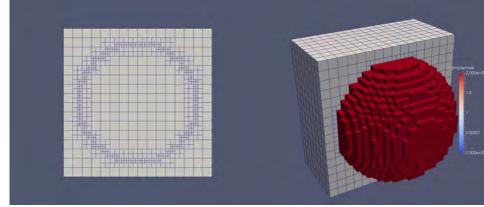
- Horizontally layered medium (White et al., 1975)
- Spherically shaped gas inclusion in a cube (Pride et al., 2004)
- Two intersecting fractures
- Stochastic fracture networks



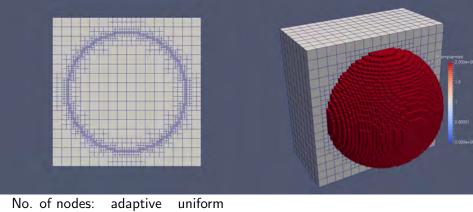
No. of nodes: adaptive uniform 4913 4913



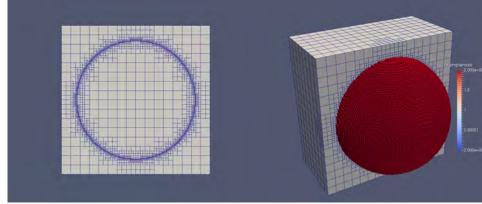
No. of nodes: adaptive uniform 9528 35973



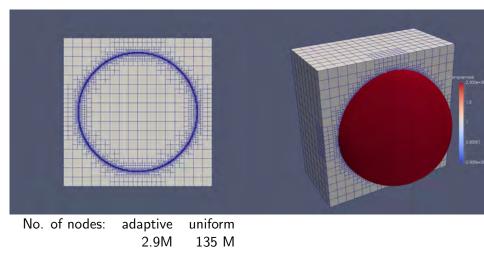
No. of nodes: adaptive uniform 33944 274625

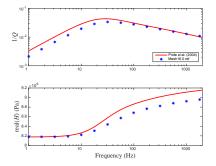


134464 2M

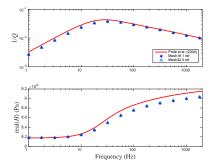


No. of nodes: adaptive uniform 733279 16M

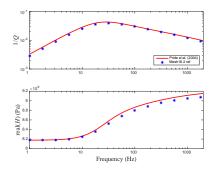




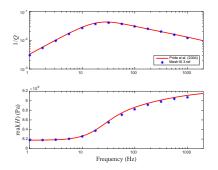
- reproduces the curves over the all spectrum
- no difference between uniform and adaptive refinement
- adaptive algorithm needed for
 - dispersion at small frequencies
 - attenuation at large frequencies



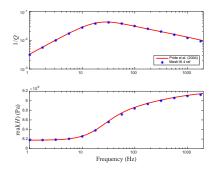
- reproduces the curves over the all spectrum
- no difference between uniform and adaptive refinement
- adaptive algorithm needed for
 - dispersion at small frequencies
 - attenuation at large frequencies



- reproduces the curves over the all spectrum
- no difference between uniform and adaptive refinement
- adaptive algorithm needed for
 - dispersion at small frequencies
 - attenuation at large frequencies

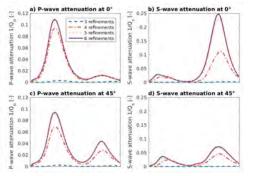


- reproduces the curves over the all spectrum
- no difference between uniform and adaptive refinement
- adaptive algorithm needed for
 - dispersion at small frequencies
 - attenuation at large frequencies



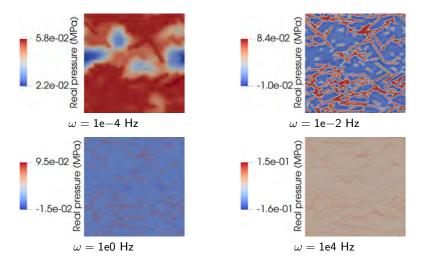
- reproduces the curves over the all spectrum
- no difference between uniform and adaptive refinement
- adaptive algorithm needed for
 - dispersion at small frequencies
 - attenuation at large frequencies

Stochastic fracture networks



- Up to 3 mesh refinements no attenuation and velocity dispersion
- We cannot reproduce peaks related to background-to-fracture and fracture-to-fracture flows
- With 4 refinements, peaks are present but values are underestimated
- No difference between 5 and 6 mesh refinements

Simulated fluid pressure for different frequencies



Conclusions

- Adaptive mesh refinement provides an automatized, foolproof mathod for meshing fractured media
- Software implementation in the FE framework MOOSE
- Already used in several follow-up studies, see e.g.
 - presentation Eva Caspari
 - poster Maria Nestola
 - poster Santiago Solazzi
 - poster Gabriel Quiroga

Future works

- Improve convergence of the discretization method, develop e.g, multiscale FE, composite FE, or partition of unity method
- A-posteriori error estimate for poroelasticity in time-frequency domain
- Develop an efficient solver exploiting the hierarchy of meshes created

Thank you for your attention

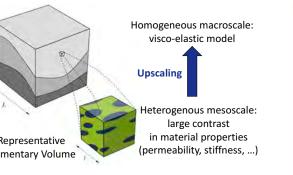
1 Development of a FE software to study

- seismic attenuation
- modulus dispersion

due to fluid pressure diffusion in fractured rocks

- efficient for
 - stochastic fracture networks

Hydro-mechanical coupled models



pted from Jänicke et al. (2015)

Biot's poroelasticity equations

$$\begin{cases} -\nabla \cdot (\boldsymbol{\sigma}_{E}(\mathbf{u}) - \alpha \boldsymbol{\rho} \mathbf{l}) = 0\\ i\alpha \nabla \cdot \mathbf{u} + i\frac{p}{M} - \frac{1}{\omega} \nabla \cdot \left(\frac{k}{\eta} \nabla \boldsymbol{\rho}\right) = 0 \end{cases}$$

- u: solid displacement
- p: fluid pressure
- ω : frequency

Time-harmonic oscillatory tests:

- attenuationvelocity dispersion
- Y_{ω}

Hybrid-dimensional model: 2D fractures

- simplified physics
- simple geometries

Biot's equations: 3D "thick" fractures

- complete coupled physics
- complex fracture geometries

Model

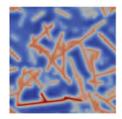
- Biot's quasi-static equations
- fractured media (jumping parameters)
- time-frequency domain
 - **u** and *p* are complex variables

Computational challenges

- mesh generation
- efficient solution methods for complex FE
 - two different discretization approaches

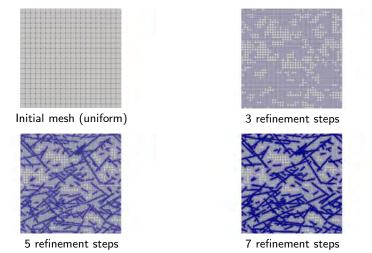
$$-
abla \cdot (2\muoldsymbol{arepsilon}+\lambda {
m tr}(oldsymbol{arepsilon}){
m I}-lpha oldsymbol{
m p}{
m I}) = 0$$

$$\int_{\Omega} i\omega \alpha \nabla \cdot \mathbf{u} + i\omega \frac{p}{M} + \nabla \cdot \left(-\frac{k}{\eta} \nabla p\right) = 0$$



Adaptive mesh refinement for fracture networks

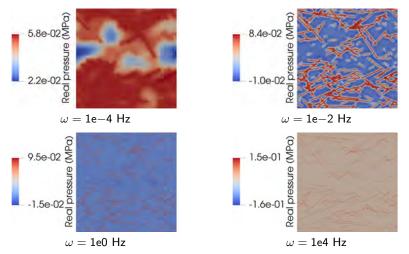
Hierarchy of adapted meshes



Algorithm implemented in MOOSE framework Validated in Favino et al., *J. Comput. Phys.* (2018, submitted)

Adaptive mesh refinement for fracture networks

Simulated fluid pressure for different frequencies



Algorithm implemented in MOOSE framework Validated in Favino et al., *J. Comput. Phys.* (2018, submitted)

$$\begin{vmatrix} A & -B^{T} \\ -iB & -iM - \frac{1}{\omega}C \end{vmatrix} \begin{vmatrix} \mathbf{u} \\ \mathbf{p} \end{vmatrix} = \begin{vmatrix} \mathbf{f} \\ \mathbf{0} \end{vmatrix}$$

Complex FE

- 4 variables in 3D
- complex<double> type (two doubles for each entry)
- not well-conditioned
- better for factorization (direct solvers)
- Generalized Saddle-point problem
 - no energy
 - not symmetric \Rightarrow no Lagrangian
 - requires ad-hoc solution methods
- e.g. Comsol

FE discretization: real approach

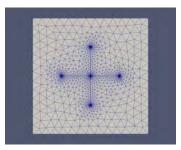
$$\begin{vmatrix} A & 0 & -B^{T} & 0 \\ 0 & A & 0 & -B^{T} \\ 0 & B & -\frac{1}{\omega}C & -M \\ B & 0 & M & -\frac{1}{\omega}C \end{vmatrix} \begin{vmatrix} \mathbf{u}_{r} \\ \mathbf{u}_{i} \\ \mathbf{p}_{r} \\ \mathbf{p}_{i} \end{vmatrix} = \begin{vmatrix} \mathbf{f}_{r} \\ \mathbf{f}_{i} \\ \mathbf{0} \\ \mathbf{0} \end{vmatrix}$$

Real FE

- 8 variables
- double type (one double per entry)
- better condition number
- better for iterative solvers
- Generalized Saddle-point problem
 - no energy
 - not symmetric \Rightarrow no Lagrangian
 - requires ad-hoc solution methods

Multiscale problem:

- fracture thicknesses $\simeq 10^{-3}$ of domain size
- fractures need to be resolved to set correct parameters



- Meshing is one of the bottlenecks of the problem X
 - elements follow the geometry
 - hands-on
 - time consuming
 - may fail
 - \Rightarrow unfeasible for realistic networks

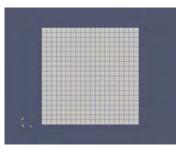
Mesh is generated once and then used for several frequencies

2D (5 parameters)

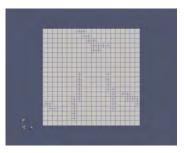
- center point (x,z)
- thickness and length
- dip around y-axis
- 3D (8 parameters)
 - center point (x,y,z)
 - thickness, length and width
 - dip around y-axis and x-axis

Parameters can be drawn from any distribution (e.g. de Dreuzy, Normal)

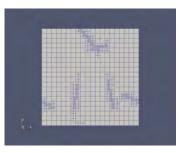
- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically



- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically



- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically



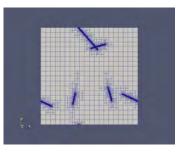
- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically

- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically

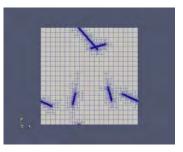
- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically



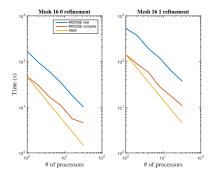
- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically



- mesh adapted outside the fracture
- material properties non-constant on each element
- continuity imposed at hanging nodes
- mesh adapted periodically

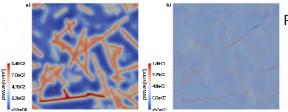


Scaling

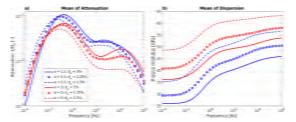


- better scaling for larger problems
- gain using complex MOOSE
 - from 2.2 to 3.6 for refinement 0
 - from 3.4 to 4.2 for refinement 1
- results with 4 refinements possible only with complex version

Random Fracture Distributions



Real values of pressure and vertical real displacement at $10^{-1} \text{ and } 10^3 \text{ Hz}$



Parrot employed to compute

- displacement and pressure distributions
- dispersion and attenuation as functions of frequency
- mean value of 20 stochastic fracture networks
- see presentation by Eva Caspari and poster Jürg Hunziker

Marco Favino