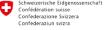

UMGANG MIT FEINSEDIMENTEN AN STAUSEEN UNTER BERÜCKSICHTIGUNG DER TURBINENABRASION

- Wissens- und Technologietransfer für die Wasserkraft -

David Felix felix@vaw.baug.ethz.ch

SCCER-SoE Annual Conference 2019, Lausanne

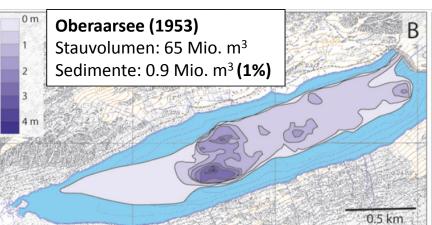


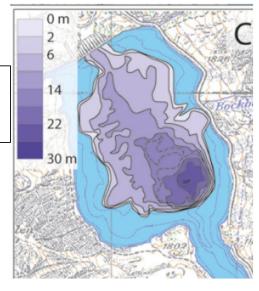
SWISS COMPETENCE CENTER for ENERGY RESEARS
SUPPLY of ELECTRICITY

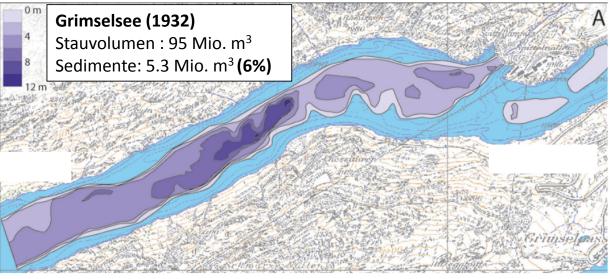
In cooperation with the CTI

Swiss Confederation

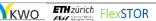
Sedimentaufkommen und Verlandung alpiner Speicher




Verlandung der Speicher im Grimselgebiet



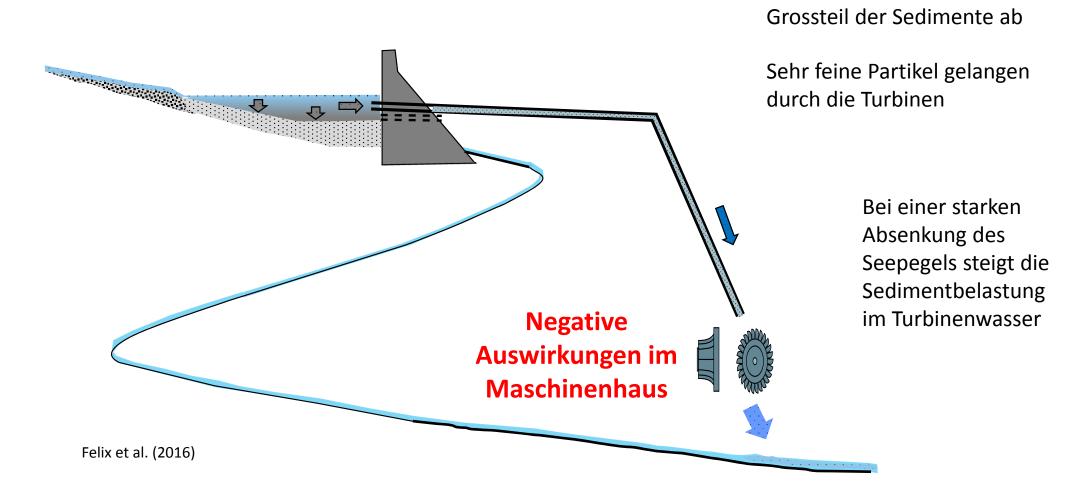
Räterichsbodensee (1950) Stauvolumen 25 Mio. m³


Sedimente: 3.6 Mio. m³ (14%)

Anselmetti et al. (2007)

Sedimenthaushalt an Speicherseen

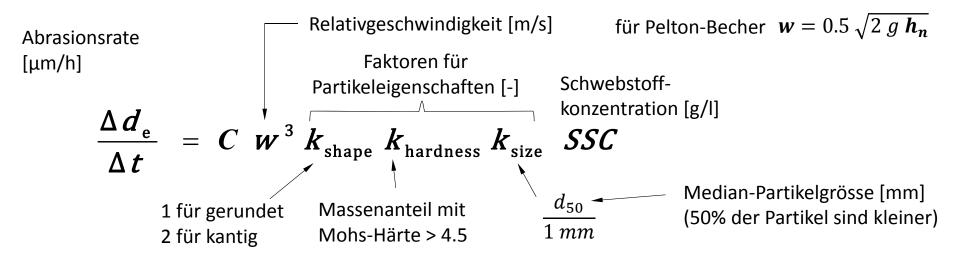
1 Sehr feine Partikel gelangen durch die Turbinen Felix et al. (2016)



In einem Stausee setzt sich der

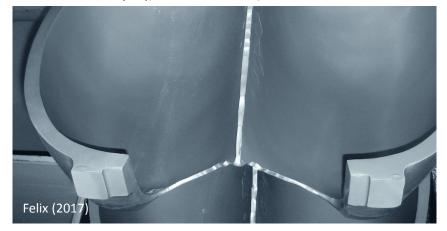
Grossteil der Sedimente ab

Sedimenthaushalt an Speicherseen



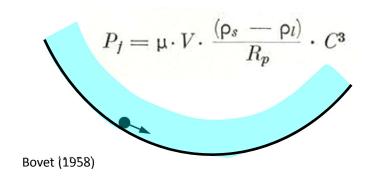
In einem Stausee setzt sich der

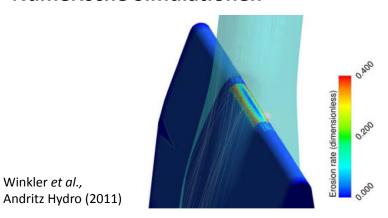
Einflussgrössen der Turbinenabrasion


Gemäss IEC 62364 (2019)

HPP Dorferbach (A), Fallhöhe 680 m, unbeschichtet

HPP Fieschertal (CH), Fallhöhe 520 m, hartbeschichtet





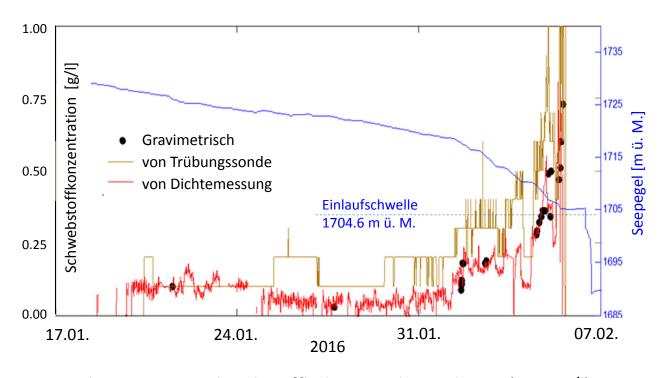
Untersuchungsmethoden

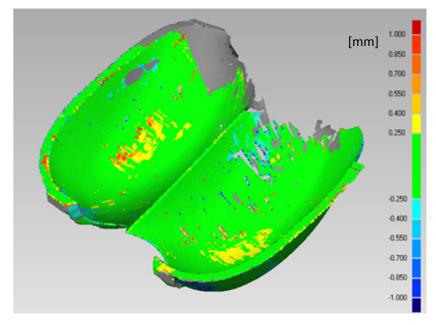
Analytische Betrachtungen

Numerische Simulationen

a) Schwebstoff- und Turbinenerosions-Monitoring während der Entleerung des Räterichsbodensees im Winter 2015/2016

Gepumptes Wasser vom Unterwasser kanal


Wasserrücklauf



a) Schwebstoff- und Turbinenerosions-Monitoring während der Entleerung des Räterichsbodensees im Winter 2015/2016

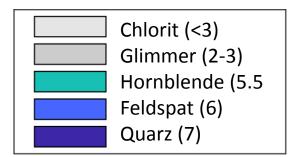
 Relativ geringe Schwebstoffbelastung der Turbinen (< 0.8 g/l) weil der See im Vorjahr schon entleert wurde (für Neubau einer weiteren Wasserfassung)

- Geringe Abrasion an den Laufradbechern
- Keine messbare Wirkungsgradabnahme

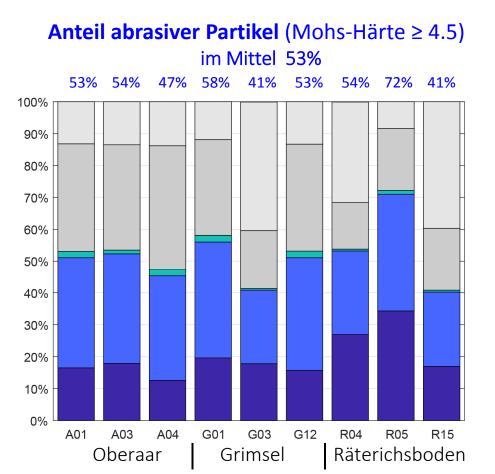
b) Untersuchung der Feinsedimente im Oberaar-, Grimsel- und Räterichsbodensee in September 2017

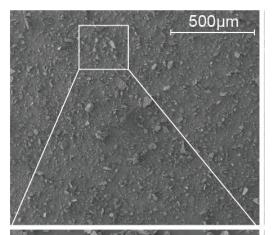
Van Veen Sediment-Probengreifer

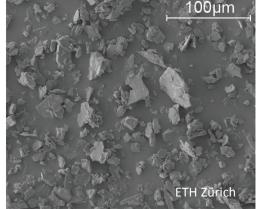
Niskin Wasserprobennehmer



b) Untersuchung der Feinsedimente im Oberaar-, Grimsel- und Räterichsbodensee in September 2017

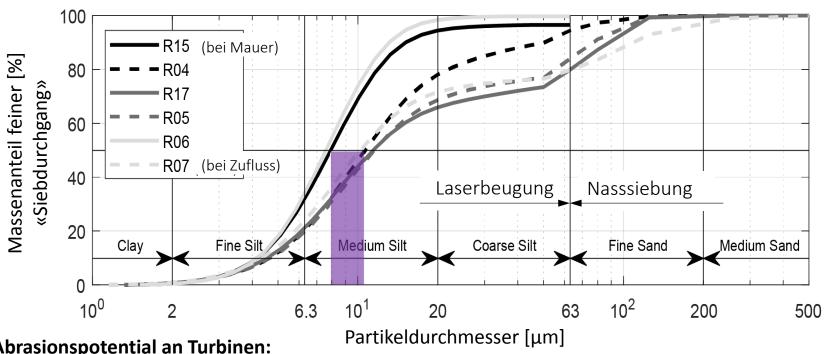

Mineralien und **Mohs-Härte**


Zermatt, Bitsch, Stalden, Mörel 63...80% Krause & Grein (1996)


Fieschertal 76 %

Felix (2017)

Partikelformen



b) Untersuchung der Feinsedimente im Oberaar-, Grimsel- und Räterichsbodensee in September 2017

Partikelgrössenverteilung (Beispiel Räterichsbodensee)

 $d_{50} = 8 \dots 12 \ \mu m$

> 65 % der Partikelmasse ist feiner als 20 μm

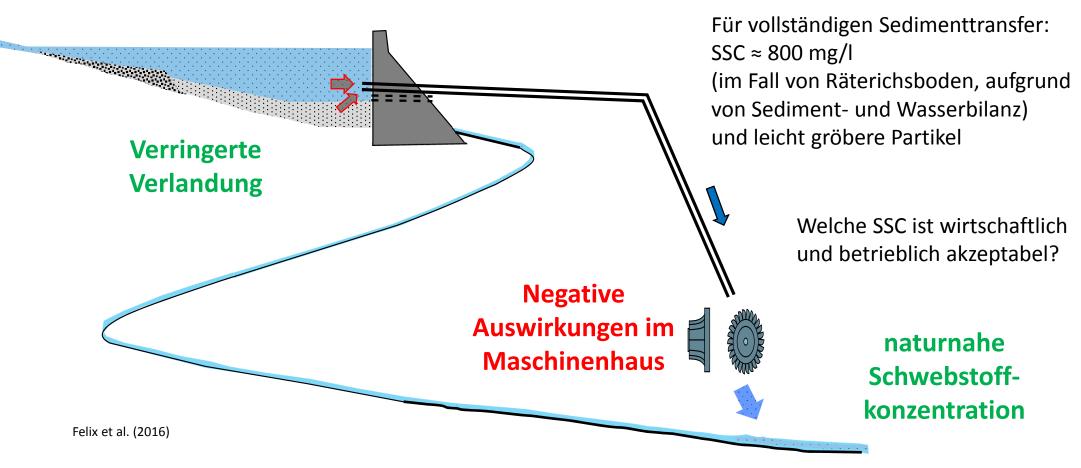
(bei Oberaar und Grimsel > 80 % feiner als 20 μm)

Abrasionspotential an Turbinen:

"linear" "Schwellenwert"

IEC 62364 (2013, 2019)

Winkler et al. (2011), unbeschichtete Pelton-Mittelschneiden



c) Option "Erhöhung der Schwebstoffkonzentration im Triebwasser"

im bestehenden Zustand: SSC \approx 50 bis 150 mg/l ($d_{50} \approx$ 4 µm)

Beiträge zur FlexSTOR-Toolbox

Umgang mit Feinsedimenten an Stauseen unter Berücksichtigung der Turbinenabrasion

Empfehlungen betreffend Messtechniken (Trübung, Dichte etc.) für das Echtzeit-Monitoring der Schwebstoffe basierend auf Feldversuchen

Vorgehen und Datensatz betreffend Sedimentuntersuchung (Partikelgrösse, -härte und -form) von drei alpinen Speicherseen

Vorgehen, um die aus Sicht des Stauraumerhalts wünschenswerte Schwebstoffkonzentration im Turbinenwasser abzuschätzen

Vorgehen, um Turbinenabrasion bei erhöhter Konzentration etc. abzuschätzen

Liste mit zu untersuchenden **Punkten** im Fall von geplanten Erhöhungen der Schwebstoffkonzentration im Triebwasser

Zusammenfassung

- Schwebstoffmonitoring: Kombinationen von Messtechniken sind interessant
 - > Messanschlüsse einbauen, falls Triebwassersystem einmal sowieso entleert wird
- Der Grossteil der **Sedimente** in alpinen Saisonspeichern ist **fein** (<20 μm) und daher grundsätzlich geeignet für die verstärkte Weiterleitung via Triebwasserweg
- Ein teilweiser bis vollständiger **Sedimenttransfer** aus Stauseen via Triebwasserweg ist möglich, wenn Anpassungen in Maschinenhäusern gemacht werden -> beim Ersatz bzw. Neubau elektromechanischer Anlagen berücksichtigen
- Weitere Studien (mit längeren Messungen an Kraftwerksanlagen, ergänzt mit Laborversuchen und Simulationen) sind erforderlich, um die diese Option wirtschaftlich begründen zu können und die Verfügbarkeit der Anlagen zu erhalten.

c) Option "Erhöhung der Schwebstoffkonzentration im Triebwasser"

Vorteile

- Verlängerung der Nutzungsdauer des Stauraums, Erhalt der Flexibilität, kein Höherlegen von Wasserfassungen
- "naturnahe" Schwebstoffkonzentrationen im Unterlauf
- Pelton-Turbinen sind einfacher zu **reparieren** als Francis-Turbinen
- Schwebstoffkonzentrationen von über 1000 mg/l können gehandhabt werden, wenn Turbinen und Nebenanlagen dafür ausgelegt sind

Nachteile

- Frhöhter Turbinenverschleiss
- Möglicherweise Verstopfungen im Druckwassersystemen für Kugelschieberantriebe, im Kühlwassersystem etc.
- Möglicherweise **störende** Sedimentablagerungen in Stollen, Becken etc.
- **Verfügbarkeit** der Kraftwerksanlage?

Gegenmassnahmen

- für Gesamtanlage wirtschaftlich betrachten; Beschichtungen etc.
- separate Kühl- und Druckwasserkreisläufe, Anpassungen Filter etc.
- Beobachten/Messen; **Unterhalt**; Einbauten?
- **Redundanz** im Maschineneinsatz

Instructions

- This slide must be deleted from the presentation
- The presentation should focus on <u>transfer to industry</u>
- Please use the provided layout (new slide: copy paste of previous slide of the same section)
- The presentation should have the following structure: (5' motivations + 10' main content)
 - 1. Title slide
 - 2. Motivations: 2015/2016 motivation to (still) carry out research on this topic + how/why we selected the sub-topics + how/why we selected the methods
 - 3. Main content:
 - 1. Methods: describe the methods you used
 - 2. Main results: provide the main results (focus on transfer to industry)
 - 3. Contribution to FlexSTOR toolbox: describe your contribution to this toolbox
 - 4. Main outcome: please summarize your <u>main outcome in 1 slide with graphical tools if possible</u> (workflow, organigram, timeline, etc.)
- Please add the research partner's logo on the dedicated place **on the slide master**:
 - On the Main Title page
 - On the **Title + Content** page
- Please add on the slide master Title + Content page your Work Package number in black, currently indicated by X, and the name of your organization
- If desired, you can change the background picture on the Title slide
- Please keep the wide-screen (16:9) format