Task 3.1

Title

Innovative technologies

Projects (presented on the following pages)

DuoTurbo: Pilot Plant Commissioning and Monitoring
D. Biner, V. Hasmatuchi, C. Münch-Alligné

Prediction of unstable full load conditions in a Francis turbine prototype
J. Gomes Pereira Jr., E. Vagnoni, A. Favrel, C. Landry, S. Alligné, C. Nicolet, F. Avellan

RENOVHydro: Methodology to determine the parameters of the hydraulic turbine governor for primary control
Christian Landry, Christophe Nicolet, João Gomes Pereira Junior, François Avellan

Numerical modelling of fish guidance structures
Claudia Leuch
DuoTurbo: Pilot Plant Commissioning and Monitoring

D. Biner¹, V. Hasmatuchi¹, C. Münch-Alligné¹

¹HES-SO Valais/Wallis, School of Engineering, Hydroelectricity Group, Sion, cecile.muench@hevs.ch

Context

- Recovering hydraulic energy lost in drinking water networks
- Modular in-line “plug and play” turbine from 5 to 25 kW
- No environmental impact
- Low investment costs

Pilot plant installation

The first DuoTurbo product has been installed in the drinking water supply network of Savièse, VS. Various hydraulic, mechanical and electrical parameters are monitored to study the long term behaviour of the DuoTurbo pilot plant. The installation was commissioned on 15th May 2019.

Automation flow chart

The realized micro-hydropower installation operates completely autonomously. The operator’s intervention is required only in case of errors, failure and maintenance.

Project

Family of modular ERS / exploit Swiss potential of 35 GWth per year

Monitoring results

The monitoring of the first 12 weeks of operation (15th May to 7th August 2019) shows a satisfying behaviour in terms of stability, operating regulation, efficiency and vibration. No significant drifts of the efficiency or vibration levels have been observed at this state.

Conclusion

The DuoTurbo pilot plant has successfully been installed and commissioned in May 2019. The turbine has recovered about 4.2 MWh of electrical energy during its first 12 weeks of operation. Furthermore, a very satisfying behavior in terms of system stability could be observed. Long term tests are ongoing for the final proof of the product’s capability.

References

Development team of Duo Turbo (CTI Nr. 17197.1 PFEN-IW)

HES-SO Valais/Wallis:

EPFL LMH:
L. Andolfatto, V. Berruex, F. Avellan

Industrial partners:
Telsa SA, Jacquier-Luisier SA, Valelectric Farnér SA

Jaquier & Luisier SA
Atelier mécanique
Prediction of unstable full load conditions in a Francis turbine prototype

J. Gomes Pereira Jr., E. Vagnoni, A. Favrel, C. Landry, S. Alligné, C. Nicolet, F. Avellan

Introduction

Francis turbines operating in full load conditions feature an axisymmetric vortex rotating in the opposite direction of the turbine runner. This vortex rope may enter in an unstable self-exciting process, leading to large pressure pulsations and oscillations in the generating unit power output. In this research work, prototype on-site and reduced scale model test results are presented where the turbine changes from a stable to an unstable full load condition due to an increase in discharge. Measurements are compared in the frequency and time domain, where similarities are evidenced between model and prototype. Using the measurements on the reduced scale model and 1-D numerical models of both the reduced scale model and the turbine prototype, eigenvalue calculations are performed to predict the discharge value of transition from stable to unstable conditions. The transition point on the prototype is then predicted with a small deviation. Transient simulations in the time domain are performed replicating the self-exciting behavior of the unstable full load condition.

Reduced scale model measurements

Stable condition

Unstable condition

Hydropower plant featuring the full-scale Francis turbine prototype

Conclusions and future works

The occurrence of unstable full load operating conditions on the prototype was predicted by reduced scale model measurements and eigenvalue calculations on this specific test case. Further measurements for different test cases are expected to further validate the new methodology.

References

Motivation

The RENOVHydro project is dedicated to the renovation of an existing hydroelectric power plant with a systematic assessment of a high number of civil and electromechanical potential modifications. In order to automatically assess the primary control potential of the renovated hydroelectric power plant, it is necessary to have a simple and robust methodology to deduce the parameters of a PID controller.

1. Application to 40 different Francis turbine

- 40 Francis turbines are selected with head from 30 to 500 mWC.
- Mechanical power is fixed arbitrary to 50MW or 300MW.
- The Francis turbine is connected to electrical grid (f_grid = 50 Hz).
- Mechanical power is fixed arbitrary to 50MW or 300MW.
- 40 Francis turbines are selected with head from 30 to 500 mWC.

Dimensioning:

- The dimensioning of the turbine (spiral casing, runner and draft tube) are derived from statistical laws.
- A realistic performance hill chart are obtained with the new SIMSEN library.

2. Block diagram of the PID controller

The control system is a PID controller in parallel with the permanent droop Bs.

3. Primary control capability defined by Swissgrid

For each Francis turbine, the test defined by Swissgrid for primary control capability is based on a frequency linear variation of 200 mHz in 10 seconds. The output power variation must be delivered within 30 s and remain between minimum and maximum threshold.

The permanent droop Bs is fixed to 4%, leading to ΔP/Pn = 10%.

4. Methods to define the PID controller parameters

A. Ziegler-Nichols Method

B. Time constant Method

5. Conclusion

- The Ziegler-Nichols method is robust and can be applied regardless of the mechanical power of the Francis turbine.
- The time constant method is based on the geometric quantities of the layout and avoids a search for the limit of stability. A correction constant must be applied depending on the power of the hydraulic turbine (K_{500MW} = 0.61 K_{300MW})

Acknowledgments

The RENOVHydro project is granted by CTI, Commission for Technology and Innovation (Grant funding 19343.1 PFEN-IW) and by SFOE, Swiss Federal Office of Energy (Grant funding SI/501436-01).
Numerical modelling of fish guidance structures

Claudia Leuch, VAW, ETH Zürich

Introduction

Fish guidance structures (FGS) are implemented at hydropower plants to reduce fish mortality during downstream migration. Their design is crucial for their guidance efficiency and the losses caused to the power production. The objective of this thesis was to set up and test a numerical model. The model was then used to analyse FGS configurations.

Background

Fish Guidance Structures

Vertical FGS consist of a bar rack implemented at an angle to the flow. The bars create hydraulic cues, which trigger an evasive behavior of the fish. Traditionally, rectangular, angled bars are used. However, they cause high hydraulic losses and an asymmetric admission flow to the turbines. Curved bars are currently tested at VAW, ETH, as an alternative design to mitigate these issues. Two additional bar shapes were also analyzed numerically (Fig. 1).

Fig. 1: Analyzed bar shapes: angled bar, curved bar, slim bar and fish bar

Numerical modelling

Numerical simulations can be used as an alternative to expensive and laborious physical experiments. Turbulent flow is often modelled using Reynolds averaging on the flow equations to reduce computational costs. As this leads to an under-determined set of equations, a turbulence model is needed as a closure relation (Fig 2). Several different models exist, and it is difficult to know a priori which one is suitable for a given problem.

Fig. 2: Schematic approach of the numerical modelling of turbulent flow

Turbulence model evaluation

Five common turbulence models (standard k-ε, realizable k-ε, RNG* k-ε, standard k-ω and k-ω SST**) were analysed for their applicability on the FGS set-up. In a preliminary assessment, the performance of the turbulence models was tested on standard scenarios (flow over flat plate, flow around a cylinder). Grid convergence was studied on a single bar and a 10-bar set-up for the drag coefficient and the overall pressure difference. The k-ε models could not capture well the boundary layer behaviour (Fig. 3). The k-ω SST model showed the best performance and was chosen for the FGS model set-up.

Fig. 3: Boundary layer behavior of the tested turbulence models displayed by the dimensionless parameters for velocity (u^+) and wall distance (y^+)

Bar rack simulation

2D Set-Up

Loss coefficient ($\Delta \xi_{FGS}$) and flow distribution downstream of the rack of the numerical model were determined for two approach velocities. They were compared to empirical data for the angled and the curved bar to validate the model. The model proved to depict both parameters well. The deviation of the loss coefficient was 12 % for the angled bar and 7 % for the curved bar set-up (Fig. 4).

Fig. 4: Comparison of loss coefficients of the numerical model, empirical formula and physical measurements for the different bar shapes and two different approach flow velocities

Both additionally tested bar shapes performed much better than the original angled bar and indicated to be comparable alternative designs to the curved bar layout.

The numerical simulation was used to analyze the flow field in close vicinity of the bars where physical measurements were not possible. Regions of flow detachment or high shear stress can thus be detected (Fig. 5), and flow features might then be correlated to observed fish behavior.

Fig. 5: Flow field around the bars of the curved bar rack set-up. The velocity U is normalised by the approach velocity U_o

3D Set-Up

To assess the flow variation in vertical direction, the model was extended to a 3D setting. Near the bottom, the flow was influenced by wall friction. In the water column, however, there was only small variation of the vertical flow field.

Conclusions

The choice of a fitting turbulence model is a crucial part of numerical flow simulations. It could be shown that the k-ω SST turbulence model was suitable for the numerical simulation of the bar rack configuration. Both flow field and loss coefficient could be reproduced well. A 2D model seems to be appropriate for a simple bar rack set-up. Further analysis should be done on the use of 3D models for simulations of FGS with additional structures such as overlays, which introduce stronger vertical flow components.

References

